Masterstudiengang Biotechnologie

Modulkatalog

Universität des Saarlandes

Stand: September 2023, gültig ab Wintersemester 2023/24

Pflichtbereich

Module / Modulgruppen		Moduleleme	ente					
wodule / wodulgruppen	Тур	Titel	Abk.	Turnus	RSS	sws	СР	Benotung
		Pflichtbereich (60 CP 41 CP benotet)	·					
Modul:	V	Introduction to Biotechnology	EiBT	WS	1	2	3	b (Klausur)
Biotechnology Fundamentals	V	Mathematische Methoden für die Biotechnologie	MMfBT	WS	1	2	3	b (Klausur)
Modul:	V	Bioreaction Engineering	BRT	SS	2	2	3	b (Klausur)
Bioreaction Engineering	Ü	Bioreaction Engineering	ÜBRT	SS	2	1	2	ub (Übungen)
	Р	Bioreaction Engineering	PBRT	SS	2	2	2	ub (Protokoll)
Modul:	V	Wirkstoffbiotechnologie	WBT	WS	1	2	3	b (Klausur)
Wirkstoff-Biotechnologie	S	Wirkstoffbiotechnologie	SWBT	WS	1	1	1	b (Seminar)
	Р	Wirkstoffbiotechnologie	PWBT	WS	1	2	2	ub (Protokoll)
Modul:	V	Molekulare Biotechnologie	MBT	SS	2	2	3	b (Klausur)
Molekulare Biotechnologie	P	Molekulare Biotechnologie	PMBT	SS	2	2	2	ub (Protokoll)
Modul:	V	Systems & Synthetic Biotechnology	SSB	SS	2	2	3	b (Klausur)
Systems & Synthetic Biotechnology	Ü	Systems & Synthetic Biotechnology	ÜSSB	SS	2	1	2	ub (Übungen)
	Р	Systems & Synthetic Biotechnology	PSSB	SS	2	2	2	ub (Protokoll)
Modul:	V	Medizinische Biotechnologie	MedBT	SS	2	2	3	b (mündl. Prf.)
Medizinische Biotechnologie	P	Medizinische Biotechnologie	PMedBT	SS	2	2	2	ub (Protokoll)
Modul:	V	Introduction to Data Analysis and Analytical Methods	An03	WS	1	2	3	b (Klausur)
Instrumentelle Bioanalytik	Р	Instrumentelle Analytik für Biotechnologen	AnA-BT	WS	1	2	2	ub (Protokoll)
Modul:	S	Seminar #1		WS/SS	1	2	3	ub (Vortrag)
Biotechnology Seminar	S	Seminar #2		WS/SS	2	2	3	ub (Vortrag)
	S	Master-Seminar		WS/SS	3	2	3	ub (Vortrag)
Modul:	Р	6-wöchiges F-Praktikum	FP	WS	3	16	10	ub (Bericht)
Fortgeschrittenen-Praktikum								
		Master-Arbeit (30 CP)						

Wahlbereich (Modulgruppe 1-3)

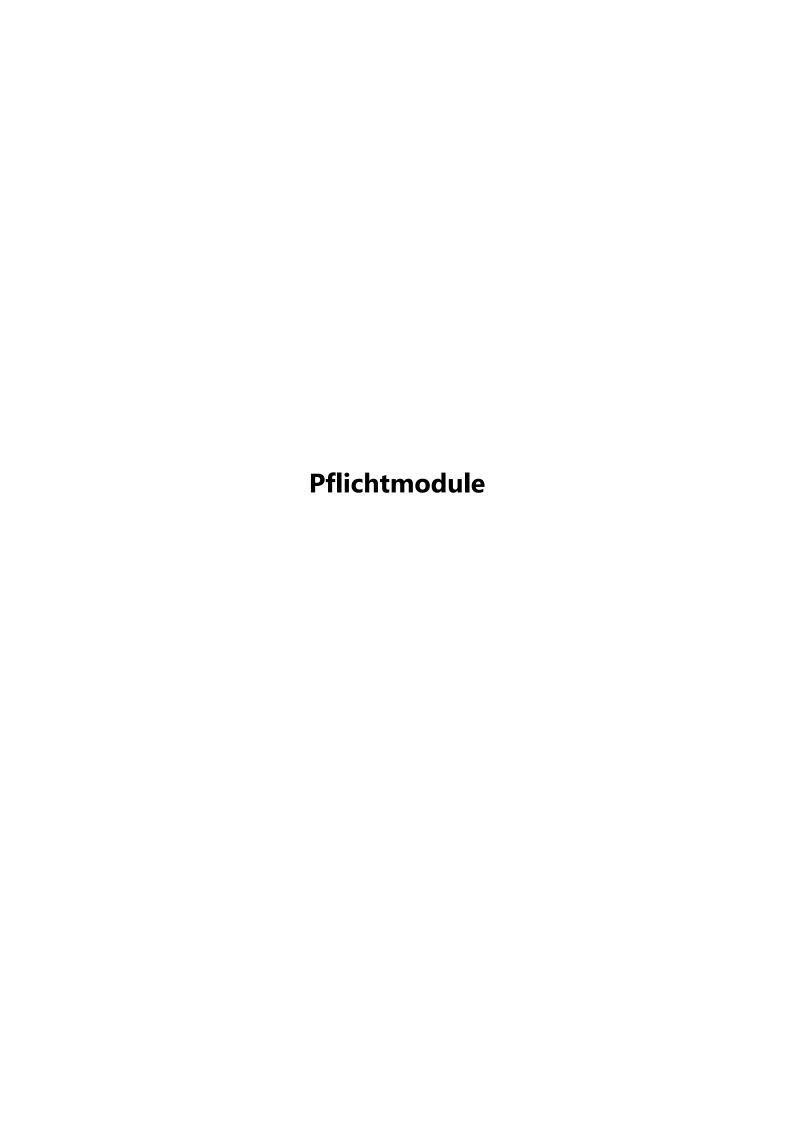
Module / Modulgruppen		Modulelemente						
wodule / wodulgruppen	Тур	Titel	Abk.	Turnus	RSS	sws	СР	Benotung
Wahlbe	ereich (min. 24 / max. 27 CP aus min. 3 von 6 Modulgruppen max. 9 CP pro Modulgru	ppe 15 CP	benotet)				
Industrielle Biotechnologie & Bioökonomie	V	Klimawandel - Was ist das?		WS/SS	1-3	2	2	b
	V	Enzyme in der organischen Synthese		SS	2	2	3	b
	V	Raumschiff Erde		WS/SS	1-3	2	3	b
Unternehmensgründung & Patentwesen	V	BioTech Entrepreneurship		WS/SS	1-3	4	6	b
	V	Unternehmensgründung und Patentwesen in den Naturwissenschaften		WS	1/3	2	3	b
	V	Crashkurs Existenzgründung		WS	3	2	3	ub
	V	Patentrecht		WS	1/3	2	3	b
	V	Patent- und Innovationsmanagement		WS	1/3	2	3	b
	S	Projektmanagement für Studium, Beruf und Wissenschaft		WS/SS	1-3	1	1	ub
	V	Gründer-Cup		WS/SS	1-3	1	1	b
								•••
Advanced Methods in Biotechnology	V	Ringvorlesung "Einführung in die Bioinformatik"		WS	1	2	3	b
	V	Ringvorlesung "Biophysik"		WS	1/3	2	2	b
	V	"Lab-on-chip" for chemistry and the life sciences		WS	1	2	3	b
	V	X-ray crystallography 1		WS	1/3	2	3	b
	V	Interpretation von Massenspektren		SS	2	1	1	b
	V+P	Softwarewerkzeuge der Bioinformatik		WS	1	4	9	b
	V+Ü	Modern Methods in Drug Discovery		WS	1/3	3	5	b
	V+Ü	Processing of Biological Data		WS	1/3	3	5	b
	V+Ü	Bioinformatics 3		WS	1/3	6	9	b
	V	Bioanorganische Chemie		WS	1/3	2	3	b
	Р	Bioanorganische Chemie		SS	2	2	3	ub
	V	Biophysik		WS	1	4	4	b

Wahlbereich (Modulgruppe 4-6)

Madula / Madularunnan		Modulelemente						
Module / Modulgruppen	Тур	Titel	Abk.	Turnus	RSS	sws	CP	Benotung
Wahlbe	ereich (min. 24 / max. 27 CP aus min. 3 von 6 Modulgruppen max. 9 CP pro Modulgru	ppe 15 CP	benotet)				
Molekulare & zelluläre Biotechnologie	V	Moderne Zelltherapien		ws/ss	1-3	2	2	b
	V	Hormone und Hormonwirkung		ws/ss	1-3	2	3	b
	٧	Principles of Epigenetics and Genomics		WS	1/3	1	3	b
	٧	Chemical Glycobiology		SS	2	2	3	b
	Р	Chemical Glycobiology		WS	3	2	2	ub
	V+Ü	Cellular Programs		SS	2	3	5	b
Biotechnologie & Wirkstoffe	٧	Biopharmazie und Drug Delivery		WS	1	2	5	b
	٧	Advances in Drug Delivery - prospects for vaccination		SS	2	2	3	b
	٧	Nanopartikel und Drug Delivery		SS	2	2	2	b
	V	Pharmazeutische Biologie		WS	1/3	2	4	ub
	Р	Biopharmazie und Pharmazeutische Technologie		SS	2	2	2	ub
	٧	Medizinische Chemie und Drug Design		WS	1/3	2	3	b
Biomaterialien & Biopolymere	V	Biomedizinische Polymere		WS	1/3	2	3	b
	V	Chemie der Biopolymere		SS	2	2	3	b
	٧	Biopolymere und bioinspirierte Polymere		SS	2	2	2	b
	٧	NanoBioMaterialien 1		WS	1/3	2	3	b
	V	NanoBioMaterialien 2		SS	2	2	3	b
	P	Biomaterialien		SS	2	2	2	ub
	Р	NanoBioMaterialien		WS	3	4	4	ub

Schlüsselqualifikationen

Module / Modulgruppen	Modulelemente								
Wiodule / Wiodulgruppell	Тур	Titel	Abk.	Turnus	RSS	sws	СР	Benotung	
		Schlüsselqualifikationen (min. 3 / max. 6 CP unbenotet)							
	S	Grüne Gentechnik		SS	2	1	2	ub	
	S	Bioethik		WS	1	1	2	ub	
	E	Exkursion zu Biotech-Unternehmen/Messen/Konferenzen		WS/SS	1-3		1-2	ub	
	V	Nöglichkeiten und Grenzen der Bioinformatik in rechtlicher Hinsicht		SS	2	1	1	ub	
	S	Vissenschaftliches Arbeiten		WS/SS	1-3	1	1	ub	
	S	Motivation – Wie begeistere ich mich selbst und andere		WS/SS	1-3	1	1	ub	
	S	Mit Teamkompetenz gemeinsam zum Ziel		WS/SS	1-3	1	1	ub	
	S	Führungskompetenzen		WS/SS	1-3	1	1	ub	
	S	Konfliktmanagement		WS/SS	1-3	1	1	ub	
	S	Zeitmanagement		WS/SS	1-3	1	1	ub	
	S	Karriereziel Doktortitel - Wohin führt mich die Promotion?		WS/SS	1-3	1	1	ub	


Siehe auch Angebote des Zentrums für lebenslanges Lernen (ZeIL) und des Sprachzentrums (SZSB)

- https://www.uni-saarland.de/einrichtung/zell/schluesselkompetenzen-programm/
- https://www.szsb.uni-saarland.de

Auflagenfächer (werden ggf. bei Zulassung erteilt)

Module / Modulgruppen		Modulelemente	•		•	-		-	
Wodule / Wodulgruppell	Тур	Titel	Abk.	Turnus	RSS	sws	СР	Benotung	
Auflagenbereich**									
	٧	Biochemie	ВС	WS	1	4	5	ub	
	V	Mikrobiologie	MI	SS	2	4	5	ub	
	V	Genetik	GE	WS	3	4	5	ub	

^{*} Gemäß BMPRO §12 Abs. 5 und 6 sowie PO §10 Abs. 3 kann je nach Ausrichtung des grundständigen Studiengangs eine Zulassung unter der Auflage erfolgen, studienbegleitend zusätzliche Kenntnisse in den Fächern Biochemie, Mikrobiologie oder Genetik durch den Besuch geeigneter Vorlesungen zu erwerben. Die dafür vorgegebene Frist beträgt 3 Semester.

Modul					Abk.				
Biotechnology F	Biotechnology Fundamentals								
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte				
1	1	WS	1 Semester	4	6				

Modulverantwortlicher Prof. Dr. Christoph Wittmann

Dozent/inn/en Prof. Dr. Christoph Wittmann (Systembiotechnologie)

Dr.-Ing. Michael Kohlstedt (Systembiotechnologie)

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 2 schriftliche Prüfungen

Lehrveranstaltungen / SWS

Einführung in die Biotechnologie

Vorlesung 2 SWS 3 CP

Mathematische Methoden für die Biotechnologie

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Einführung in die Biotechnologie

30 h Präsenzzeit Vorlesung

60 h Vor- und Nachbereitung Vorlesung, Übungsaufgaben,

Klausurvorbereitung

Mathematische Methoden für die Biotechnologie

30 h Präsenzzeit Vorlesung

60 h Vor- und Nachbereitung Vorlesung, Übungsaufgaben,

Klausurvorbereitung

 $\Sigma = 180 \text{ h}$

Modulnote Mittelwert aus beiden Prüfungsnoten

Lernziele/Kompetenzen

- Erwerben grundlegender Kenntnisse molekularer, mikrobieller, und verfahrenstechnischer Grundlagen der Biotechnologie.
- Kennenlernen der wichtigsten Arbeitsgebiete und Anwendungsfelder der Biotechnologie.
- Erwerben grundlegender Kompetenzen, um biotechnologische Verfahren zu entwickeln, zu analysieren und zu bewerten.
- Erlernen wichtiger mathematischer Grundlagen im Bereich der Differentiation und Integration mathematischer Funktionen, der Formulierung und der Lösung einfacher Differentialgleichungen, sowie der linearen Algebra.

- Erlangen von Kompetenzen, um grundlegende mathematische Probleme im Bereich der Biotechnologie zu formulieren.
- Erwerben von Fähigkeiten, selbständig experimentelle Daten auszuwerten, Versuche statistisch und Model-gestützt zu planen und relevante mathematische Software, wie Excel, R, Octave und MODDE für biotechnologische Fragestellungen zu nutzen.

Inhalt

Vorlesung Einführung in die Biotechnologie

- Einführung
- Industrielle Entwicklung und genetische Revolution
- Zellen und Enzyme als Biokatalysatoren
- Metabolic Engineering von Zellfabriken
- Rohstoffe und Ausgangsmaterialien
- Bioreaktoren und Bioprozesse
- Aufreinigung und Produktgewinnung
- Scale-up und industrielle Implementierung
- Biobasierte Chemikalien, Materialien und Treibstoffe
- Pharmazeutische Produkte: Biopharmazeutika und kleine Moleküle
- Nahrungs- und Futtermittelzusätze, Enzyme

Vorlesung Mathematische Methoden für die Biotechnologie

- Differenzieren
- Integration
- Differentialgleichungen
- Lineare Algebra (Vektoren und Matrizen)
- Stöchiometrische Netzwerkanalyse (Metabolite Balancing)
- Statistik
- Statistische Versuchsplanung

Unterrichtssprache

Deutsch

Literaturhinweise

- Bioprozesstechnik (Chmiel, H., Takors, R., Weuster-Botz, D., Springer, 2018)
- Industrielle Mikrobiologie (Sahm, H., Antranikian, G., Stahmann, K.-P., Takors, R., Springer, 2013)
- Die Biotechnologie-Industrie (Schüler, J., Springer, 2016)
- Bioreaction engineering principles (Villadsen, J., Nielsen, J., Liden, G., Wiley, 2016)
- Taschenatlas der Biotechnologie und Gentechnik (Schmid, R.D., Wiley-VCH, 2016)
- Tutorium Mathe f
 ür Biologen (Springer, 2013)
- Design of Experiments (Montgomery, D.C., JOHN WILEY & SONS INC, 2012)

Modul					Abk.
Bioreaktionstech	BRT				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Semester	5	7

Modulverantwortlicher Prof. Dr. Christoph Wittmann

Dozent/inn/en Prof. Dr. Christoph Wittmann (Systembiotechnologie)

Dr.-Ing. Michael Kohlstedt (Systembiotechnologie)

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 schriftliche Prüfung, Übungsaufgaben, Protokolle

Lehrveranstaltungen / SWS

<u>Bioreaktionstechnik</u>

Vorlesung 2 SWS Übung 1 SWS 5 CP

Praktikum Bioreaktionstechnik

Praktikum 2 SWS 2 CP

Arbeitsaufwand

<u>Bioreaktionstechnik</u>

30 h Präsenzzeit Vorlesung 15 h Präsenzzeit Übung

90 h Vor- und Nachbereitung Vorlesung und Übung, Übungsaufgaben, Protokoll, Prüfungsvorbereitung

Praktikum Bioreaktionstechnik

45 h Präsenzzeit Praktikum

30 h Vor- und Nachbereitung Praktikum, Protokoll

 $\Sigma = 210 \text{ h}$

Modulnote Prüfung zur Vorlesung

Lernziele/Kompetenzen

- Erlernen der Grundlagen bioreaktionstechnischer und bioverfahrenstechnischer Prozesse in der Biotechnologie.
- Erlangen apparativer und konstruktiver Kenntnisse zum Aufbau von Reaktoren und peripherer Einrichtungen inklusive begleitender Analytik
- Erwerben übergreifender Kompetenzen zur Vernetzung einzelner Verfahrenselemente zu Gesamtverfahren.

• Erwerben theoretischer und praktischer Fähigkeiten, bioreaktions- und –verfahrenstechnische Vorgänge qualitativ zu erfassen, mit Hilfe mathematischer Modellgleichungen zu beschreiben und für Simulationen biotechnologischer Verfahren einzusetzen.

Inhalt

Vorlesung Bioreaktionstechnik

- Thermodynamik biologischer Prozesse
- Massen- und Energiebilanzen
- Grundlagen in Kinetik und Stöchiometrie
- Enzymkinetik
- Kinetik von Zellwachstum und Produktbildung
- Grundlagen Stoff- und Wärmetransport
- Diffusion und Reaktionen
- Design und Konstruktion von Bioreaktoren
- Aufbau und Betrieb von Bioreaktoren
- Online-Messung und Prozess-Kontrolle
- Advanced Processing: Recycling und In-situ-Produktentfernung
- Advanced Processing: Immobilisierte Biokatalysatoren

Praktikum Bioreaktionstechnik

- Bioreaktionstechnische Grundoperationen (Verweilzeit, Stofftransport)
- Fermentationstechnik und Prozessführung
- Prozessbegleitende Analytik
- Produktgewinnung und Aufreinigung

Unterrichtssprache

Deutsch

Literaturhinweise

- Biological Reaction Engineering: Dynamic Modelling Fundamentals with Simulation Examples (Dunn, Jl., Heinzle, E., Ingham, J., Přenosil, JE., Wiley, 2003)
- Bioreaction Engineering Principles (Villadsen, J., Nielsen, J., Liden, G., Wiley, 2016)
- Bioverfahrensentwicklung (Storhas, W., Wiley-VCH, 2013)
- Industrial Biotechnology: Microorganisms (Wittmann, C., Liao, JC, Wiley-VCH, 2016)
- Industrial Biotechnology: Processes (Wittmann, C., Liao, JC, Wiley-VCH, 2016)

Modul					Abk.
Wirkstoffbiotech	WBT				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1	1	WS	1 Semester	5	6

Modulverantwortliche/r Prof. Dr. Rolf Müller

Dozent/inn/en Prof. Dr. Rolf Müller (Helmholtz-Zentrum für Pharmazeutische

Forschung Saarland, HIPS) Dr. Carsten Volz (HIPS)

Prof. Dr. Andriy Luzhetskyy (Pharmazeutische Biotechnologie)

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 schriftliche Prüfung, Seminarvortrag, Protokolle

Lehrveranstaltungen / SWS

Wirkstoffbiotechnologie

Vorlesung 2 SWS 3 CP

Seminar Wirkstoffbiotechnologie

Seminar 1 SWS 1 CP

Praktikum Wirkstoffbiotechnologie

Praktikum 2 SWS 2 CP

Arbeitsaufwand

Wirkstoffbiotechnologie

30 h Präsenzzeit Vorlesung

45 h Vor- und Nachbereitung Vorlesung, Prüfungsvorbereitung

<u>Seminar Wirkstoffbiotechnologie</u>

15 h Präsenzzeit Seminar

15 h Ausarbeitung Seminar

Praktikum Wirkstoffbiotechnologie

45 h Präsenzzeit Praktikum

30 h Vor- und Nachbereitung Praktikum, Protokoll

 $\Sigma = 180 \text{ h}$

Modulnote CP-gewichteter Mittelwert aus mündlicher Prüfung und Seminar

Bestehen der Klausur ist Voraussetzung zur Teilnahme am Praktikum

Lernziele/Kompetenzen

- Erlernen grundlegender Methoden der Molekularbiologie
- Kenntnis spezieller Aspekte der Wirkstoffbiotechnologie
- Gemeinsames Erarbeiten und Anwenden fortgeschrittener Methoden der molekularen Biotechnologie
- Literaturrecherche, wissenschaftliches Vortragen und Diskutieren

Inhalt

Wirkstoffbiotechnologie

- Aufbau der DNA
- Klonierung
- Restriktionsanalyse
- Sequenzierung und Annotation
- PCR
- Expressionsanalyse
- Proteinexpression
- Deletions- und Insertionsmutanten

Seminar Wirkstoffbiotechnologie

• Themen: Wirkstoffbiotechnologie, klinische Pharmazie, Omics-Analysen (e.g. Transcriptomics, Proteomics), Next-Generation Sequencing, etc.

Praktikum Wirkstoffbiotechnologie

- Klonierung und heterologe Expression
- Transposon-Mutagenese
- Heterologe Expression von Naturstoff-Biosynthesewegen
- Chemisches und biologisches Screening ausgewählter Naturstoffproduzenten
- Isolierung von chromosomaler DNA
- Proteinanalytik
- Erstellen der physikalischen Karte eines Plasmides
- Identifizierung eines klonierten DNA Fragmentes mittels Datenbanksuche

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

- Molekulare Biotechnologie (Clark, D., Pazdernik, N, Springer, 2009)
- Der Experimentator Molekularbiologie/Genomics (Mülhardt, C, Springer, 2013)

Modul					Abk.
Molekulare Biote	MBT				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Semester	4	5

Modulverantwortliche/r Prof. Dr. Bruce Morgan

Dozent/inn/en Prof. Dr. Bruce Morgan (Biochemie)

Dr. Frank Hannemann (Biochemie)

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 schriftliche Prüfung, Protokolle

Lehrveranstaltungen / SWS

Molekulare Biotechnologie

Vorlesung 2 SWS 3 CP

Praktikum Molekulare Biotechnologie

Praktikum 2 SWS 2 CP

Arbeitsaufwand

Molekulare Biotechnologie

30 h Präsenzzeit Vorlesung

60 h Vor- und Nachbereitung Vorlesung, Prüfungsvorbereitung

Praktikum Molekulare Biotechnologie

45 h Präsenzzeit Praktikum

15 h Vor- und Nachbereitung Praktikum, Protokoll

 $\Sigma = 150 \text{ h}$

Modulnote Prüfung zur Vorlesung

Lernziele/Kompetenzen

 Kenntnis und Anwendung molekularbiologischer Methoden zur genetischen Veränderung von Produktionsorganismen

Inhalt

Molekulare Biotechnologie

- Expression von Proteinen (Einführung)
- Expression in Escherichia coli
- Expression in Hefen (Saccharomyces, Pichia, Schizosaccharomyces)
- Expression in Insektenzellen
- Expression in Säugerzellen
- Expression in Pflanzen
- Methoden der Aufreinigung
- Proteindesign (rational) und gerichtete Evolution von Proteinen zur Herstellung optimierter Biokatalysatoren

Praktikum Molekulare Biotechnologie

- Herstellung kompetenter Escherichia coli-Zellen
- Transformation, heterologe Expression in Escherichia coli
- Expressionsanalyse, SDS-PAGE
- Reinigung einer thermophilen DNA-Polymerase
- Untersuchungen der Enzymfunktion, PCR, Agarosegelelektrophorese, spezifische Aktivität
- Experimente zur Anwendung der PCR-Technik

Unterrichtssprache

Deutsch

Literaturhinweise

- Molekulare Biotechnologie (Clark, D., Pazdernik, N, Springer, 2009)
- Der Experimentator Molekularbiologie/Genomics (Mülhardt, C, Springer, 2013)

Modul					Abk.				
Systems & Synth	Systems & Synthetic Biotechnology								
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte				
2	2	SS	1 Semester	5	7				

Modulverantwortliche Prof. Dr. Christoph Wittmann

Dozent/inn/en Prof. Dr. Christoph Wittmann (Systembiotechnologie)

weitere Tutor(inn)en

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 schriftliche Prüfung, Übungsaufgaben, Seminarvortrag,

Protokolle

Lehrveranstaltungen / SWS

Systems & Synthetic Biotechnology

Vorlesung 2 SWS

+ Übung 1 SWS 5 CP

Praktikum Systems & Synthetic Biotechnology

Praktikum 2 SWS 2 CP

Arbeitsaufwand

Systems & Synthetic Biotechnology

30 h Präsenzzeit Vorlesung 15 h Präsenzzeit Übung

75 h Vor- und Nachbereitung Vorlesung und Übung, Übungsaufgaben, Protokoll, Prüfungsvorbereitung

Praktikum Systems & Synthetic Biotechnology

45 h Präsenzzeit Praktikum

45 h Vor- und Nachbereitung Praktikum, Protokoll

 $\Sigma = 210 \text{ h}$

Modulnote Prüfung zur Vorlesung

Lernziele/Kompetenzen

- Erlernen der wichtigsten Konzepte und Technologien im Bereich der Systembiotechnologie und der Synthetischen Biotechnologie
- Erwerben der Fähigkeiten, biologische Systeme mit Hilfe von Omics-Methoden (Genom, Transkriptom, Proteom, Metabolom, Fluxom) systemweit zu analysieren
- Erlernen konzeptioneller Strategien zur Optimierung von Zellfabriken

- Erlangen von Kompetenzen, metabolische Netzwerke auf Basis einschlägiger Datenbanken und wissenschaftlicher Literatur zu erstellen
- Kompetenzerwerb zur Netzwerk-Modellierung mit geeigneter Software (z.B. Cell-Net-Analyzer) für Vorhersagen zur Leistungsfähigkeit, essentieller Stoffwechselwege und Optimierungsmöglichkeiten
- Literaturrecherche, wissenschaftlicher Vortrag und Diskussion

Inhalt

Vorlesung und Übung "Systems & Synthetic Biotechnology" [EN]

- Einführung und Definitionen
- Mikrobieller Stoffwechsel und Zellfunktionen
- Metabolische und regulatorische Netzwerke
- "The World of Omics" Globale Analyse biologischer Systeme
- Gentechnik und Synthetische Biologie
- Strategien und Konzepte zur Stammoptimierung
- Industrielle Beispiele
- Übung: Metabolic network analysis using elementary flux modes

Praktikum Systems & Synthetic Biotechnology

- Functional Genomics
- Metabolic Engineering
- ¹³C-Tracerstudien und Fluxom-Analyse
- Transcriptomics
- Metabolomics

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

- Metabolic Engineering (Stephanopoulos, G., Aristidou, A., Nielsen, J., 1998, Academic Press)
- Bioreaction Engineering Principles (Villadsen, J., Nielsen, J., Lidén, G., Springer, 2003)
- The Metabolic Pathway Engineering Handbook (Schmolke, CRC Press, 2009)
- Systems Metabolic Engineering (Wittmann, C., Lee, SY., Springer, 2012)
- Industrial biotechnology: Microorganisms (Wittmann, C., Liao, JC, Wiley-VCH, 2016)
- Industrial biotechnology: Processes (Wittmann, C., Liao, JC, Wiley-VCH, 2016)

Modul					Abk.
Medizinische Bio	MedBT				
Studiensem. 2	Regelstudiensem. 2	Turnus SS	Dauer 1 Semester	SWS 4	ECTS-Punkte 5

Modulverantwortliche/r Prof. Dr. Heiko Zimmermann

Dozent/inn/en Prof. Dr. Heiko Zimmermann (Molekulare und Zelluläre

Biotechnologie, Fraunhofer-Institut für Biomedizinische Technik, IBMT)

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 mündliche Prüfung, Protokolle

Lehrveranstaltungen / SWS

Medizinische Biotechnologie

Vorlesung 2 SWS 3 CP

Praktikum Medizinische Biotechnologie

Praktikum 2 SWS 2 CP

Arbeitsaufwand

Medizinische Biotechnologie

30 h Präsenzzeit Vorlesung

60 h Vor- und Nachbereitung Vorlesung, Prüfungsvorbereitung

Praktikum Medizinische Biotechnologie

45 h Präsenzzeit Praktikum

15 h Vor- und Nachbereitung Praktikum, Protokoll

 $\Sigma = 150 \text{ h}$

Modulnote Prüfung zur Vorlesung

Lernziele/Kompetenzen

- Kenntnis wichtiger Anwendungen in der medizinischen Biotechnologie
- Ziel des Praktikums ist das Erlernen und Anwenden von Methoden zur Untersuchung und Verbesserung der Einschlussimmobilisierung und Kryokonservierung tierischer Zellen

Inhalt

Medizinische Biotechnologie

- Biokompatibilität
- Nanobiotechnologie
- Elektromanipulation von Zellen

- Immobilisierung und Verkapselung
- Kryobiotechnologie
- Zell-Therapien

Praktikum Medizinische Biotechnologie

- Zellkultur von adhärenten tierischen Zellen
- Kultur von multizellulären Systemen (Sphäroide)
- Einschlussimmobilisierung von tierischen Zellen und Sphäroiden mit Alginaten
- Gewinnung von hochreinen Alginaten zur Anwendung in der medizinischen Biotechnologie
- Kryokonservierung mit modernen und herkömmlichen Methoden
- Methoden zur Untersuchung und Verbesserung der Kryokonservierung

Unterrichtssprache

Deutsch

Literaturhinweise

• siehe Buchempfehlungen der Dozent(inn)en

Modul	Modul								
Instrumentelle B	AnA-BT								
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte				
1	1	WS	1 Semester	4	5				

Modulverantwortliche/r Prof. Dr. Ralf Kautenburger

Dozent/inn/en Prof. Dr. Ralf Kautenburger (Anorganische Festkörperchemie)

Prof. Dr. Christopher Kay (Physikalische Chemie und Didaktik der

Chemie)

Dr. Klaus Hollemeyer (Physikalische Chemie und Didaktik der Chemie)

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 schriftliche Prüfung, Protokolle

Lehrveranstaltungen / SWS

Introduction to Data Analysis and Analytical Methods (An03)

Vorlesung 2 SWS 3 CP

Praktikum Instrumentelle Analytik für Biotechnologen (AnA-BT)

Praktikum 2 SWS 2 CP

Arbeitsaufwand

Introduction to Data Analysis and Analytical Methods

30 h Präsenzzeit Vorlesung

60 h Vor- und Nachbereitung Vorlesung, Prüfungsvorbereitung

Praktikum Instrumentelle Analytik für Biotechnologen

30 h Präsenzzeit Praktikum

30 h Vor- und Nachbereitung Praktikum, Protokoll

 $\Sigma = 150 \text{ h}$

Modulnote Prüfung zur Vorlesung

Bestehen der Klausur ist Voraussetzung zur Teilnahme am Praktikum

Lernziele/Kompetenzen

- Grundlegendes Verständnis chemischer Analysemethoden, wie Massenspektrometrie, Chromatographie, Elektrophorese und deren Anwendung
- Vorstellen mathematischer Methoden zur Fehlerbetrachtung
- Qualitative und quantitative Analysen Chromatographie-, Massenspektrometrie- und Kapillarelektrophorese-Systemen

Inhalt

Introduction to Data Analysis and Analytical Methods

- Massenspektrometrie, Massenspektrum und analytische Informationen, Ionisierungsmethoden und Massenanalysatoren, Anwendungen der MS, insbesondere in der modernen Bioanalytik
- Theorien des chromatographischen Trennprozesses, chromatographische Parameter-Qualitative und quantitative Analyse
- Gaschromatographie, Trennsysteme, Instrumentierung, Detektoren, Säulentypen, Anwendungen
- Flüssigchromatographie, Trennsysteme, Instrumentierung, Detektoren, Anwendungen
- Theorie des elektrophoretischen Trennprozesses, Migration, Mobilität, Migration in Gelen
- Zonenelektrophorese, Isotachophorese, isoelektrische Fokussierung
- Kapillarelektrophorese, Gelelektrophorese, Anwendungen
- Systematische Fehler, Zufallsfehler, Genauigkeit, Präzision, Verteilungen, Mittelwerte
- Standardabweichungen, Statistische Pr

 üfverfahren

Praktikum Instrumentelle Analytik für Biotechnologen

- HPLC, HPLC-MS, Kenngrößen, qualitative und quantitative Analyse
- GC, Kenngrößen, Kovacs Indices, Massenspektrometrie, qualitative und quantitative Analyse
- Kapillarelektrophorese, Kenngrößen, qualitative und quantitative Analyse
- Elementanalytik: Versuch Elektroanalytik (z.B. Polarographie, coulometrische KF-Titration)
- Elementanalytik: Versuch Spektroskopie (z. B. AAS, RFA, ICP-OES, ICP-MS)

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

• siehe Buchempfehlungen der Dozent(inn)en

Modul	Abk.				
Biotechnologie-	SBT				
Studiensem.					
1-3	1-3	WS/SS	3 Semester	2	9

Modulverantwortliche/r Prof. Dr. Christoph Wittmann

Dozent/inn/en Prof. Dr. Christoph Wittmann (Systembiotechnologie)

Dr.-Ing. Michael Kohlstedt (Systembiotechnologie)

Betreuer(innen) anderer Lehrstühle

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Vortrag, Ausarbeitung

Lehrveranstaltungen / SWS

Seminar #1

Seminar 2 SWS 3 CP

Seminar #2

Seminar 2 SWS 3 CP

Master-Seminar

Seminar 2 SWS 3 CP

Arbeitsaufwand

Seminar #1 und #2 und Masterseminar

30 h Präsenzzeit Seminar

60 h Vorbereitung Seminar, Vortrag, wissenschaftliche Diskussion,

schriftliche Zusammenfassung

 $\Sigma = 270 \text{ h}$

Modulnote unbenotet, <u>Anwesenheitspflicht</u>

Lernziele/Kompetenzen

- Verständnis und Einordnung wissenschaftlich relevanter Literatur
- Fähigkeit zur Präsentation von Forschungsergebnissen in englischer Sprache
- Erfahrung in wissenschaftlicher Diskussion

Inhalt

- Biotechnologisch relevante Publikationen werden regelmäßig auf den Seiten der Biotechnologie von verschiedenen Arbeitsgruppen zur Bearbeitung angeboten
- Alternativ kann durch Eigenrecherche ein Paper ausgewählt und ein geeigneter Betreuer kontaktiert werden
- Themenwahl und Termin sind mit dem Betreuer und dem Seminarorganisierendem abzustimmen
- Zum Termin im laufenden Semester können bis zu 3 Seminarthemen vorgestellt werden
- Jedes Thema kann nur einmal vergeben werden.
- Jeder Vortrag soll max. 20 min dauern. Danach folgen 10 min wissenschaftliche Diskussion, Feedback und Kritik durch die Betreuer und die anwesenden Studierenden.
- Zum Vortrag gehört eine detaillierte Liste der verwendeten Literatur, sowie eine zusammenfassende Ausarbeitung (max. 3 Seiten), welche archiviert und verschlüsselt online zugänglich gemacht werden.
- Das dritte Seminar soll der Vorbereitung der Masterarbeit dienen; es geht dabei klar um eine intensive Vorbereitung durch Literaturstudium und Vorstellen des bisherigen Wissenstandes; die Anwesenheit des Betreuers der Masterarbeit ist verpflichtend.
- Es herrscht immer <u>Anwesenheitspflicht</u>

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

• Ten Simple Rules for Making Good Oral Presentations (Philip E Bourne, 2007)

Modul	Abk.					
Fortgeschrittene	PFABT					
Studiensem.	Studiensem. Regelstudiensem. Turnus Dauer SWS					
3	3	WS/SS	6 Wochen	16	10	

Modulverantwortliche/r Dozent(inn)en der Biotechnologie

Dozent/inn/en Dozent(inn)en der Biotechnologie

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

F-Praktikum

individuelles Laborpraktikum 16 SWS 10 CP

Arbeitsaufwand

F-Praktikum

240 h Präsenzzeit und Laborarbeit

60 h Vor- und Nachbereitung, Verfassen eines Abschlussberichtes

 Σ = 6 Wochen

Modulnote unbenotet

Lernziele/Kompetenzen

- Erlernen von selbständigem wissenschaftlichen Arbeiten
- Teamkompetenz
- Methodenkompetenz zur Präsentation von wissenschaftlichen Ergebnissen

Inhalt

- Der/die Studierende bewirbt sich formlos bei einer Arbeitsgruppe des Biotechnologie-Studienganges und arbeitet dort an einem mehrwöchigen wissenschaftlichen Projekt als Teil der Arbeitsgruppe
- Die fachlichen Inhalte richten sich nach der jeweiligen wissenschaftlichen Ausrichtung der Forschungsgruppe
- auf Anfrage kann das F-Praktikum mit Betreuung einer AG des Biotechnologie-Studienganges auch extern (Hiwi-Tätigkeit, außeruniversitäres Forschungsinstitut, Unternehmen, ausländische Hochschule) absolviert und zu diesem Zweck verlängert werden

Unterrichtssprache

Deutsch oder Englisch

Literaturhinweise

• wird individuell festgelegt

Modul					Abk.
Master-Arbeit					MABT
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
4	4	WS/SS	24 Wochen	64	30

Modulverantwortliche/r Dozent(inn)en der Biotechnologie

Dozent/inn/en Dozent(inn)en der Biotechnologie

Zuordnung zum Curriculum Pflicht

Zulassungsvoraussetzungen Master-Seminar, min. 85 CP (siehe PO)

Leistungskontrollen / Prüfungen schriftliche Abschlussarbeit

Lehrveranstaltungen / SWS

Master-Arbeit

individuelle Master-Arbeit 64 SWS 30 CP

Arbeitsaufwand

Master-Arbeit

20 Wochen Experimentelle Labortätigkeit 4 Wochen Verfassen der Abschlussarbeit

 Σ = 24 Wochen

Modulnote benotet, siehe PO

Lernziele/Kompetenzen

- Erlernen von selbständigem wissenschaftlichen Arbeiten in einer biotechnologisch forschenden Arbeitsgruppe
- Beherrschen relevanter Labortechniken der Biotechnologie
- Spezialisierung auf ein biotechnologisches Fachgebiet
- Verfassen einer wissenschaftlichen Abschlussarbeit

Inhalt

- Der/die Studierende bewirbt sich formlos bei einer Arbeitsgruppe der Biotechnologie und arbeitet dort an einem wissenschaftlichen Projekt als Teil der Arbeitsgruppe
- Die fachlichen Inhalte richten sich nach der jeweiligen wissenschaftlichen Ausrichtung der Forschungsgruppe
- Literaturstudium zum gegebenen Thema
- Selbständige Durchführung von Experimenten
- Kritische Beurteilung und Diskussion der erhaltenen Resultate
- Vergleich der Resultate mit dem Stand der Literatur
- Niederschrift der Abschlussarbeit
- Auf Antrag bei der Prüfungskommission kann die Master-Arbeit mit Betreuung einer AG des Biotechnologie-Studienganges auch extern (wie etwa in einem außeruniversitären Forschungsinstitut, einem Unternehmen oder an einer ausländischen Hochschule) angefertigt werden

Unterrichtssprache

• Deutsch oder Englisch

Literaturhinweise

• wird individuell festgelegt

Wahlbereich

Vertiefende Modulgruppen mit frei wählbaren Modulelementen:

1. Industrielle Biotechnologie & Bioökonomie:

Lehrveranstaltungen mit den Schwerpunkten Nachhaltigkeit, Klimaschutz, biobasierte Wirtschaft, nachwachsende Rohstoffe, Bioprodukte, Biokatalyse, Metabolic Engineering und Weiße Biotechnologie. In der Ringveranstaltung "Biotechnology Colloquium" werden aktuelle Forschungs- und Arbeitsfelder der Biotechnologie vorgestellt.

2. Unternehmensgründung & Patentwesen

Lehrveranstaltungen mit den Schwerpunkten Existenzgründung, Innovationsmanagement, Unternehmensführung, Patentwesen, Intellectual Property (IP) und Projektmanagement in den Naturwissenschaften.

3. Advanced Methods in Biotechnology

Lehrveranstaltungen zum Kennenlernen moderner und fortgeschrittender mathematischer, bioinformatischer und bioanalytischer Methoden für die Biotechnologie.

4. Molekulare & zelluläre Biotechnologie

Naturwissenschaftliche Lehrveranstaltungen zur fachlichen Vertiefung in Stoffwechselbiologie, Biochemie, Mikrobiologie, Zellbiologie, Molekularbiologie und Genetik.

5. Biotechnologie & Wirkstoffe

Lehrveranstaltungen, die einen Einblick in die medizinische und pharmazeutische (= rote) Biotechnologie, die Biopharmazie, die pharmazeutische Technologie und die Wirkstoffentwicklung ermöglichen.

6. Biomaterialien & Biopolymere

Lehrveranstaltungen zu den Themen biomedizinische Polymere, Nano(bio)materialien, biobasierte Kunststoffe, Biomaterialien, deren Herstellung und Einsatz.

Aus mindestens 3 der 6 Modulgruppen sind Veranstaltungen zu wählen. Maximal 9 CP pro Modulgruppe können eingebracht werden. Insgesamt werden 15 CP im Wahlbereich benotet.

Industrielle Biotech	Abk.				
Enzyme in der o	VEOS				
Studiensem.	Studiensem. Regelstudiensem. Turnus Dauer SWS				
2	2	SS	1 Semester	2	3

Modulverantwortliche/r Prof. Dr. Andreas Speicher

Dozent/inn/en Prof. Dr. Andreas Speicher (Organische Chemie)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 schriftliche Klausur

Lehrveranstaltungen / SWS

Enzyme in der organischen Synthese

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Enzyme in der organischen Synthese

30 h Präsenzzeit Vorlesung

60 h Selbststudium (Vor- und Nachbearbeitung)

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Erwerb von Wissen rund um den Einsatz von Enzymsystemen zur Synthese organischer Verbindungen
- Verständnis von Biokatalyse und Biotransformation

Inhalt

- Einführung: Aminosäuren, Peptide, Proteine
- Enzyme als Katalysatoren und Enzymkinetik
- Produktion, Isolierung und Handling von Enzymen
- Biotransformation: Enzyme zur chemischen Synthese
- Enzymklassen und Nomenklatur
- Hydrolase-Reaktionen
- Oxidoreduktase-Reaktionen (Oxidation und Reduktion)
- Enzyme zur Knüpfung von C-C-Bindungen
- Enzyme zur Knüpfung glycosidischer Bindungen
- Weitere Enzyme in der Organischen Synthese
- Künstliche Enzyme (Enzym-Mimetika), Antikörper

Unterrichtssprache

• Deutsch

Literaturhinweise

• siehe Buchempfehlungen der Dozent(inn)en

Industrielle Biotechnologie & Bioökonomie: Abk.					
Klimawandel - V	Klimawandel – Was ist das?				
Studiensem.					
1-3	1-3	WS / SS	1 Semester	2	2

Modulverantwortliche/r Prof. Dr. Liselotte Diester-Haaß

Prof. Dr. Christoph Wittmann (Fachverantwortlicher)

Dozent/inn/en Prof. Dr. Liselotte Diester-Haaß (Geographie)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen In einem Portfolio soll ein in der Vorlesung vorgestelltes

Thema bezogen auf den Studiengang des jeweiligen

Studierenden schriftlich aufbereitet werden.

Lehrveranstaltungen / SWS

<u>Klimawandel</u>

Vorlesung 2 SWS 2 CP

Arbeitsaufwand

Klimawandel

30 h Präsenzzeit Vorlesung 30 h Bearbeitung des Portfolios

30 h Selbststudium (Vor- und Nachbearbeitung)

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Verständnis des Systems Klima: Atmosphäre, Hydrosphäre, Cryosphäre, Biosphäre, Landoberfläche.
- Transfer des erlangten Wissens auf biotechnologische Fragestellungen, wie die Rolle von Mikroorganismen beim Klimawandel oder die Entwicklung einer biobasierten Wirtschaft basierend auf nachwachsenden Rohstoffe und Stoffkreisläufen (Cradle-to-cradle).

Inhalt

- CO₂-Zunahme in der Atmosphäre und globale Folgen
- "Tipping Points":
 - o der arktische Ozean; Eisverlust. Folgen für Tierwelt; Verkehrswege, Rohstoff-Exploration, Folgen für Klima der Nordhemisphäre. Politische Verwicklungen.
 - Grönland; Gletscherschmelze, Meeresspiegelanstieg, Zerstörung des Lebensraums der Inuit.

- Antarktis; Gletscherschmelze, Meereisabnahme, Meeresspiegelanstieg, Folgen für Tierwelt, Folge für CO₂ Speicherung im Ozean.
- Permafrostgebiete; Methan (Verstärkung des Treibhauseffektes), Morphologie (Thermokarst).
- o Infrastrukturprobleme; Landverlust. Zerstörung des Lebensraums der Inuit.
- Ozeane; Versauerung, Erwärmung, Sauerstoffabnahme; Vermüllung. Folgen für marine Tier- und Pflanzenwelt; insbesondere Fischerei, Ernährungsprobleme, Landverlust. Erste Klimaflüchtlinge.
- Marine Zirkulation; Wird der Golfstrom versiegen?
- o Geoengineering; Wie ist Erwärmung zu vermindern?

Unterrichtssprache

Deutsch

Literaturhinweise

• siehe Buchempfehlungen der Dozent(inn)en

Industrielle Biotech	Industrielle Biotechnologie & Bioökonomie: Abk.					
Raumschiff Erde	Raumschiff Erde					
Studiensem. 1-3	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					

Modulverantwortliche/r Prof. Dr. Guido Kickelbick

Dr. Susanne Mantel

Dozent/inn/en verschiedene

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen schriftliches Assay zu Fragen aus Einzelveranstaltungen

Lehrveranstaltungen / SWS

Raumschiff Erde

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Raumschiff Erde

30 h Präsenzzeit Vorlesung30 h Bearbeitung der Fragen

30 h Selbststudium (Vor- und Nachbearbeitung)

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Verständnis der verschiedenen Dimensionen des Klimawandels
- Finden von Lösungsansätzen zur Bewältigung des Klimawandels

Inhalt

- Naturwissenschaftliche, philosophische, soziologische, psychologische, ökonomische und juristische Aspekte des Klimawandels
- Grundlagen der Klimakatastrophe
- Herausforderungen und Lösungsansätze zur Bewältigung

Unterrichtssprache

Deutsch

Literaturhinweise

• siehe Buchempfehlungen der Dozent(inn)en

Unternehmensgründung & Patentwesen:					Abk.
BioTech Entrepreneurship					
Studiensem.	Studiensem. Regelstudiensem. Turnus Dauer SWS				
1-3	1-3	WS/SS	-	-	6

Modulverantwortliche/r Jun.-Prof. Benedikt Schnellbächer

Prof. Christoph Wittmann

Dozent/inn/en Jun.-Prof. Benedikt Schnellbächer

Prof. Christoph Wittmann

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen Bewerbungsgespräch

Leistungskontrollen / Prüfungen Vorträge / Abschlusspräsentation

Lehrveranstaltungen / SWS

BioTech Entrepreneurship

Vorlesung 4 SWS 6 CP

Arbeitsaufwand

BioTech Entrepreneurship

60 h Präsenzzeit, Gruppenarbeit 60 h Ideen- und Produktentwicklung 60 h Dokumentation, Präsentation

 $\Sigma = 180 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- The ability to consciously select, evaluate, and apply different decision-making strategies in the development of biotechnology products,
- an understanding of the relevance, characteristics, and context of application of biotechnology-related product development technologies (e.g. CAD software, 3D printing, etc.),
- the application of agile project management techniques to prototype,
- the use of design thinking for product realization.

Inhalt

This course is intended for motivated master students and doctoral students in economics and natural sciences who are interested in entrepreneurship and have start-up ambitions. It offers the opportunity to combine start-up activities with studies and to gain first experiences in the field of entrepreneurship, thanks to the DTE study concept "Road to Start-Up".

The fields of biotechnology, material science and pharma are catalysators for technology progress, which are merging more and more with innovations such as mRNA-based vaccines, biology inspired surfaces on cars, which reject dirt particles or cell-based CO₂ recycling. Biotechnology-focused product development include methods and tools to actively shape our society. This theory-driven and actionoriented course provides an overview of technologies, methods and tools for conceptualizing and developing products. Upon successful completion of the course, students will be able to: (1) explain what factors are involved in biotechnology product development and how to incorporate them into decision-making processes, (2) explain which technologies are relevant to specific processes, (3) use agile project management techniques in prototyping, and (4) use design thinking for product development.

Unterrichtssprache

• Deutsch/Englisch

Literaturhinweise

Unternehmensgründung & Patentwesen:					Abk.	
Projektmanager	Projektmanagement für Studium, Beruf und Wissenschaft					
Studiensem.	Studiensem. Regelstudiensem. Turnus Dauer SWS					
1-3	1-3	WS/SS	-	-	1	

Modulverantwortliche/r Thomas Berrang (Zentrum für lebenslanges Lernen, ZelL)

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Dr. Theo Jäger (ZelL)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

<u>Projektmanagement</u>

Seminar 10 AE = 1 CP

Arbeitsaufwand

<u>Projektmanagement</u>

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Kennenlernen des Projektmanagements als Planungs-, Steuerungs- und Kontrollinstrument
- Erlernen grundlegender Methoden und Instrumente (Tools) des Projektmanagements
- Verständnis der Rollen und Funktionen im Projektmanagement

Inhalt

Die Arbeit in Projekten nimmt in allen Sektoren der Wirtschaft und Aufgabenfeldern der Hochschulen aufgrund der erhöhten Flexibilitäts-, Innovations-und Drittmittelanforderungen stetig zu. Damit gewinnt auch das Projektmanagement als Planungs-, Steuerungs- und Kontrollinstrument immer stärker an Bedeutung und wird zunehmend zur Kernkompetenz. Bereits im Studium, spätestens aber in Wissenschaft, (Hochschul-)Management und Beruf werden Kenntnisse und Fähigkeiten im Bereich Projektmanagement zunehmend unabdingbar, da immer mehr Entwicklungen und Prozesse in Organisationen und Unternehmen projektbasiert, in Teilen abteilungsübergreifend oder interdisziplinär organisiert werden und somit einer spezifischen Managementkompetenz bedürfen In diesem Workshop werden grundlegende Methoden und Instrumente (Tools) des Projektmanagements erarbeitet sowie die verschiedenen Phasen von Projekten vorgestellt. Außerdem soll geklärt werden, welche Personen mit ihren unterschiedlichen Rollen und Funktionen an einem

Projekt beteiligt sind. Weitere Fragen, die im Workshop bearbeitet werden, sind, welche spezifischen Herausforderungen das Projektmanagement zu bewältigen hat und welche Aspekte zur erfolgreichen Durchführung beitragen können.

Unterrichtssprache

• Deutsch

Literaturhinweise

-

Unternehmensgrür	Abk.				
Unternehmensg					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	2	3

Modulverantwortliche/r Prof. Dr. Manfred Schmitt (Fachvertreter Biowissenschaften)

Dipl.-Kfm. Axel Koch (Wissens- und Technologietransfer, KWT)

Dozent/inn/en Christine Feiler (KWT)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Unternehmensgründung und Patentwesen

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Unternehmensgründung und Patentwesen

30 h Präsenzzeit und Mitarbeit Vorlesung

60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Erlernen der Grundlagen einer Unternehmensgründung im eigenen Fachbereich
- Kenntnis der Grundlagen des Patentwesens sowie der Patentrecherche
- Lernen von Erfahrungsberichten von Unternehmer/inne/n

Inhalt

- Geschäftsmodellentwicklung
- Rechtsformwahl
- Innovationsmanagement
- Grundlagen des Patentwesens und Patentrecherche
- Gründungsförderung an der UdS
- Erfahrungsberichte von Gründer/inne/n aus den Naturwissenschaften

Unterrichtssprache

Deutsch

Literaturhinweise

-

Unternehmensgrün	Abk.				
Crashkurs "Exist					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	2	3

Modulverantwortliche/r Gründungsberater Gisbert Dill

Prof. Dr. Heinz Kußmaul

Dozent/inn/en verschiedene

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Fallstudien

Lehrveranstaltungen / SWS

Crashkurs "Existenzgründung"

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Crashkurs "Existenzgründung"

30 h Präsenzzeit und Mitarbeit Vorlesung

60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Erlernen der Grundlagen der Betriebswirtschaftslehre
- Antworten auf Fragen der Existenzgründung
- Arbeit an Fallstudien und Erfahrungsaustausch

- Management und Rechnungswesen
- Unternehmensrechnung
- Bilanzierung
- Kostenrechnung
- Produktkalkulation
- Finanzierung
- Erstellung eines Finanzierungsplans
- Investitionsrechnung
- Erstellung eines Businessplans
- Arbeitsrecht
- Gesellschaftsrecht
- Unternehmensbesteuerung

- Absicherung für Gründer und Unternehmer
- Förderprogramme, Venture Capital, Kreditfinanzierung
- Schutzrechte und Patente
- Marketing
- Vertriebsstrukturen
- Praktische Steuerfragen für Existenzgründer
- Angebote des Gründer-Campus Saar, Erfahrungsberichte von Gründern, Get-together

Unterrichtssprache

• Deutsch

Literaturhinweise

-

Unternehmensgrür	Abk.				
Studienangebot					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1-3	1/3	WS+SS	2 Semester	2	6

Modulverantwortliche/r Gründungsberater Gisbert Dill

Prof. Dr. Heinz Kußmaul

Dozent/inn/en verschiedene

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen eine abschließende Klausur

Lehrveranstaltungen / SWS

Studienangebot "Existenzgründung"

Vorlesung 2 SWS 2x3 CP

Arbeitsaufwand

Crashkurs "Existenzgründung"

60 h Präsenzzeit und Mitarbeit Vorlesung

120 h Vor- und Nachbereitung

 $\Sigma = 180 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Erlernen von Grundlagen in Unternehmensmanagement, Rechnungswesen, Finanzwesen und Existenzgründerpraxis

Inhalt

- Allgemeine Einführung
- Rechtsformen
- Unternehmensbesteuerung
- Finanzierung
- Investition
- Businessplan
- Externes Rechnungswesen
- Internes Rechnungswesen
- Unternehmensnachfolge
- Management

Unterrichtssprache

Deutsch

Literaturhinweise

itera

Unternehmensgrün	Abk.				
Patent- und Inno					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	2	3

Modulverantwortliche/r

Dozent/inn/en -

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Patent- und Innovationsmanagement

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Patent- und Innovationsmanagement

30 h Präsenzzeit und Mitarbeit Vorlesung

60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Erwerb von Praxiswissen im gewerblichen Rechtsschutz
- Erlernen von Strategien im IP-Management

Inhalt

- Der Schutz von neuen Entwicklungen, Produkten oder Verfahrensweisen, d.h. von allen Innovationen, hat für Handwerk und Industrie eine zentrale Bedeutung.
- Unternehmen suchen nicht nur fachlich versierte Mitarbeiterinnen und Mitarbeiter, sondern Spezialisten, die zusätzlich über Kenntnisse im Patent- und Innovationsschutz verfügen.

Unterrichtssprache

Deutsch

Literaturhinweise

43

Unternehmensgrün	Abk.				
Patentrecht					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	2	3

Modulverantwortliche/r Rechtsanwalt Dr. Mathias Wolff

Dozent/inn/en Rechtsanwalt Dr. Mathias Wolff

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

<u>Patentrecht</u>

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Patentrecht

30 h Präsenzzeit und Mitarbeit Vorlesung

60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Erwerb von Praxiswissen im Patentrecht

Inhalt

- Gewerbliche Schutzrechte
- Schwerpunkt Patentrecht
- fächerübergreifende Vorlesung, die sich an Studierende der Natur- und Ingenieurwissenschaften, der Informatik sowie der Rechtswissenschaften richtet

Unterrichtssprache

Deutsch

Literaturhinweise

44

Unternehmensgrü	Abk.				
Patentrecht- un					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1-3	1-3	WS/SS	1 Semester	1	1

Dozent/inn/en verschiedene (WuT)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

Patentrecht

Seminar 2 SWS 1 CP

Arbeitsaufwand

Patentrecht

15 h Präsenzzeit und Mitarbeit Vorlesung

15 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

• Erwerb von Praxiswissen in Patentrecht und Patentrecherche

Inhalt

- Gewerbliche Schutzrechte (Abgrenzung vom Urheberrecht | Patentrecht | andere Schutzrechte)
- Arbeitnehmererfinderrecht (Unternehmen | Besonderheiten an Hochschulen)
- Patentanmeldeprozess (Überblick und Fristen | Anmeldestrategien | Kosten | Aufbau einer Patentschrift)
- Strategie der Patentrecherche (Grundlagen der Patentrecherche | Depatisnet | Espacenet | Recherchestrategien | Dokumentation)
- Rechercheübungen (Online Rechercheübungen)

Unterrichtssprache

Deutsch

Literaturhinweise

45

Advanced Methods	Abk.				
Softwarewerkze	PBI-B-1				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	1	WS	1 Semester	4	9

Modulverantwortliche/r Prof. Dr. Volkhard Helms

Dozent/inn/en Prof. Dr. Volkhard Helms (Bioinformatik)

PD Dr. Michael Hutter (Bioinformatik)

und weitere Tutor(inn)en

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur, Mini-Forschungsprojekte

Lehrveranstaltungen / SWS

Softwarewerkzeuge der Bioinformatik

Vorlesung 2 SWS 3 CP Praktikum 2 SWS 6 CP

Arbeitsaufwand

Softwarewerkzeuge der Bioinformatik

64 h Präsenzzeit Vorlesung/Praktikum

206 h Selbststudium und Bearbeitung der Projekte

 $\Sigma = 270 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Kenntnis relevanter Software-Tools und deren Anwendungen
- Erlernen von Methoden zur Bearbeitung einfacher bioinformatischer Aufgabenstellungen (Mini-Forschungsprojekte)
- Selbständige Gruppenarbeit
- Einsatz diverser Software-Tools

- Bioinformatische Praxis: biologische Sequenzanalyse, Proteinstruktur, Systembiologie
- populäre Algorithmen zum paarweisen Vergleich von Sequenzen
- multiple Sequenzalignment
- Verfahren zur Motivsuche und zur Suche von Punktmutationen
- Verknüpfung Sequenz Struktur
- Konstruktion von Homologiemodellen
- Prinzipien biomolekularer Interaktionen

• Expressionsanalyse, Interaktionsnetzwerke, regulatorische Netzwerke, Diffusionsprozesse und stochastische Prozesse

Unterrichtssprache

• Deutsch

Literaturhinweise

- David Mount: Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbour (2004)
- Arthur Lesk: Introduction to Bioinformatics, Oxford University Press (2008)

Advanced Methods	Abk.				
Modern Method	BI-BM-1				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	3	5

Modulverantwortliche/r PD Dr. Michael Hutter

Dozent/inn/en PD Dr. Michael Hutter (Bioinformatik)

und weitere Tutor(inn)en

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen Softwarewerkzeuge der Bioinformatik

Leistungskontrollen / Prüfungen Klausur, Übungsaufgaben

Lehrveranstaltungen / SWS

Modern Methods in Drug Discovery

Vorlesung 2 SWS 3 CP Übung 1 SWS 2 CP

Arbeitsaufwand

Modern Methods in Drug Discovery

48 h Präsenzzeit Vorlesung und Tutorials

102 h Selbststudium und Bearbeitung der Projekte

 $\Sigma = 150 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Current methods of bioinformatics and chemoinformatics in the development of pharmaceutical drugs and their molecular targets
- Combination of knowledge from bioinformatics and other life sciences
- Applicability of bioinformatics knowledge onto the field of pharmaceutically relevant tasks
- Application of computer programs onto selected biological systems, virtual screening issues as well as consolidation and extension of special knowledge
- Critical evaluation and interpretation of results in order to allow subsequent independent research and to strengthen scientific communication skills

Inhalt

- Computer-assisted prediction of suitable pharmaceutical drugs and the search for new potential target in the human genome
- Molecular causes of typical diseases and mechanism of action of pharmaceutical drugs
- Virtual compound libraries and search strategies
- In silico eADMET-models and filters, bioavailability
- Statistics and QSAR-methods
- Metabolism, toxicology and adverse side effects with respect to biomarkers
- Polymorphism and susceptible genes
- Identification of orthologue genes for deriving new targets and model organisms
- Current trends and strategies

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

- A.R. Leach, V. Gillet: An Introduction to Chemoinformatics, Springer 2007
- G. Klebe: Wirkstoffdesign, Spektrum Akad. Verlag 2009

BI-BM-2
DI-DIVI-Z
ECTS-Punkte
S

Modulverantwortliche/r Prof. Dr. Volkhard Helms

Dozent/inn/en Prof. Dr. Volkhard Helms (Bioinformatik)

und weitere Tutor(inn)en

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen Programmierkenntnisse in Python

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Processing of Biological Data

Vorlesung 2 SWS 3 CP Übung 1 SWS 2 CP

Arbeitsaufwand

Processing of Biological Data

48 h Präsenzzeit Vorlesung/Praktikum

102 h Selbststudium und Bearbeitung der Projekte

 $\Sigma = 150 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Knowledge and application of suitable methods for the visualization, analysis, curation and integration of biological data

- Clustering of data
- Principal component analysis
- Differential expression analysis
- Removal and correction of data outliers; prediction of missing values; BEclear method
- Processing of proteomics data; imputation of missing values
- Peak assignment
- Protein structure data (Protein DataBank); thermal mobility; titration states; hydration sites;
 PDBcheck
- Molecular dynamics simulations; time correlation of snapshots
- Analysis of multi-dimensional data

Unterrichtssprache

• Englisch

Literaturhinweise

Molekulare und Ze	Abk.				
Hormone und H	HOR				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1-3	2/3	WS/SS	1 Semester	2	3

Modulverantwortliche/r Prof. Rita Bernhardt

Dozent/inn/en Prof. Rita Bernhardt (Biochemie), Dr. Björn Diehl (ZHMB)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Hormone und Hormonwirkung

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Hormone und Hormonwirkung

30 h Präsenzzeit Vorlesung 60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Kenntnis der Klassifizierung, der Biosynthese und der Wirkungsweise von Hormonen

Inhalt

- Es wird ein Überblick über die Einteilung und Biosynthese von Hormonen gegeben
- Besonders wird auf die Rolle von Hormonen im gesunden und kranken Menschen eingegangen.
- Letztlich werden Möglichkeiten zur biotechnologischen Herstellung von Hormonen dargestellt, die zu den wichtigsten Arzneimitteln gehören.

Unterrichtssprache

Deutsch

Literaturhinweise

• Lehrbücher der Biochemie und Biologie

Molekulare und Zel	Abk.					
Moderne Zelltherapien						
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte	
1-3	2/3	WS/SS	1 Semester	2	2	

Modulverantwortliche/r PD Dr. med. Anja Moldenhauer

Dozent/inn/en PD Dr. med. Anja Moldenhauer (UKS)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur (Multiple Choice)

Lehrveranstaltungen / SWS

Moderne Zelltherapien

Vorlesung 2 SWS 2 CP

Arbeitsaufwand

Moderne Zelltherapien

30 h Präsenzzeit Vorlesung 30 h Vor- und Nachbereitung

 $\Sigma = 60 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Kenntnis neuer Therapieformen verschiedener medizinischer Disziplinen (Tissue Engineering, Stammzellen, Gentherapie)

Inhalt

- Von der klassischen Transfusionstherapie über Behandlungen mit Stammzellen bis hin zum modernen Tissue Engineering werden neue Therapieformen verschiedener Disziplinen vorgestellt, die zum Teil noch wissenschaftlich erprobt und bisher in Vorlesungen und Lehrbüchern kaum berücksichtigt werden.
- Auch wirtschaftliche und rechtliche Aspekte kommen zur Sprache.

Unterrichtssprache

Deutsch

Literaturhinweise

• Achtung: hoher Anteil medizinischer Inhalte

Molekulare und Zel	Abk.				
Principles of Epi					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	2	3

Modulverantwortliche/r Prof. Dr. Jörn Walter

Dozent/inn/en Prof. Dr. Jörn Walter (Genetik)

Dr. Gilles Gasparoni (Genetik)

weitere Dozent(inn)en

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Principles of Epigenetics and Genomics

Blockvorlesung 2 SWS 3 CP

Arbeitsaufwand

<u>Principles of Epigenetics and Genomics</u>

30 h Präsenzzeit Vorlesung 60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Obtaining an overview of epigenetic concepts and their relevance for human biology

- Introduction into basic mechanisms and enzymology of epigenetic control
- Discussion of the developmental aspects of epigenetic modifications, particularly their importance for cell fate maintenance and cell function.
- Summary of disease related aspects
- Epigenomic mapping technologies, the basic principles of epigenetic data production, data management and data interpretation.

Unterrichtssprache

• Englisch

Literaturhinweise

- "Epigenetics", by David Allis, Marie-Laure Caparros, Thomas Jenuwein, Danny Reinberg, Monika Lachlan, 2015, 984 pages, ISBN 978-1-936113-59-0
- "Molekulare Genetik" (mit einem Kapitel über Epigenetik), Hrsg.: Alfred Nordheim, Rolf Knippers, 10. Auflage 2015, 568 S., 620 Abb., ISBN: 9783134770100 (only available in german)
- "Cancer Genetics and Epigenetics: Two Sides of the Same Coin?" Review by You & Jones http://dx.doi.org/10.1016/j.ccr.2012.06.008

Molekulare und Zel	Abk.				
Chemical Glycobi					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Semester	2	3

Modulverantwortliche/r JP Dr. Alexander Titz

Dozent/inn/en JP Dr. Alexander Titz (Helmholtz-Zentrum für Pharmazeutische

Forschung Saarland, HIPS)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Chemical Glycobiology

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Chemical Glycobiology

30 h Präsenzzeit Vorlesung 60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

• Obtaining an overview of chemical biology of carbohydrates and their biomedical applications

Inhalt

- Natural carbohydrates
- Chemical synthesis (protecting groups, glycosylation chemistry)
- Analytical methods (MS, NMR, assays)
- Biological roles
- Biosynthesis
- Biological recognition by lectins
- Selected examples in biomedical applications (Tamiflu, Heparin, Anti-Infectives, Vaccines, Selectins, etc.)

Unterrichtssprache

• Deutsch oder Englisch

Literaturhinweise

Molekulare und Ze	Abk.				
Praktikum Chem					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
3	3	WS	3 Wochen		6

Modulverantwortliche/r JP Dr. Alexander Titz

Dozent/inn/en JP Dr. Alexander Titz (Helmholtz-Zentrum für Pharmazeutische

Forschung Saarland, HIPS)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen Vorlesung Chemical Glycobiology

Leistungskontrollen / Prüfungen Protokolle

Lehrveranstaltungen / SWS

Chemical Glycobiology

Forschungspraktikum 6 CP

Arbeitsaufwand

Chemical Glycobiology

120 h Präsenzzeit individuelles Forschungspraktikum

60 h Vor- und Nachbereitung, Protokolle

 $\Sigma = 180 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

• Erlangen von experimentellem und methodischem Wissen zur Chemie der Kohlenhydrate angelehnt an die Vorlesung Chemical Glycobiology

Inhalt

 Individuelles Forschungspraktikum dessen experimenteller Inhalt von laufenden Forschungsprojekten abhängt

Unterrichtssprache

• Deutsch oder Englisch

Literaturhinweise

Biotechnologie & W	Abk.				
Biopharmazie un					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	1	WS	1 Semester	3	5

Modulverantwortliche/r Prof. Dr. Marc Schneider

Dozent/inn/en Jun-Prof. Sangeun Lee (Biopharmazie und Pharmazeutische

Technologie)

Dr. Birgitta Loretz (HIPS)

Prof. Dr. Claus-Michael Lehr (HIPS)

Prof. Dr. Marc Schneider (Biopharmazie und Pharmazeutische

Technologie)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur, Vortrag

Lehrveranstaltungen / SWS

Biopharmazie und Drug Delivery

Vorlesung 2 SWS

Übung 1 SWS 5 CP

Arbeitsaufwand

Biopharmazie und Drug Delivery

30 h Präsenzzeit Vorlesung

60 h Hausarbeit, Seminarvortrag, Exkursion

60 h Vor- und Nachbereitung, Gruppenarbeit, Vortrag

 $\Sigma = 150 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Kennenlernen der grundlegenden Methoden der Biopharmazie und Pharmazeutischen Technologie (Arzneimittelformen, Drug Delivery, etc.)

- Biopharmazeutische Grundlagen der wichtigsten Applikationswege für Arzneimittel (oral, inhalativ, transdermal, parenteral)
- Pharmazeutisch-technologische Grundlagen für die Entwicklung, Herstellung und Prüfung entsprechender Arzneiformen (z.B. Tabletten, Transdermale Systeme, Inhalationsaerosole, Parenterale Depotarzneiformen
- Arzneiformenbezogene Pharmakokinetik (Grundlagen)
- Zellkulturmodelle biologischer Barrieren als Tools für die Entwicklung neuer Medikamente

Advanced Drug Delivery Systeme basierend auf Nanobiotechnologie

Unterrichtssprache

• Deutsch

Literaturhinweise

Biotechnologie & Wirkstoffe:					
Nanopartikel und Drug Delivery - Moderne Arzneiformen und Biomedizinische					
Anwendungen					
Regelstudiensem.		Dauer 1 Semester	SWS 2	ECTS-Punkte 2	
	d Drug Delivery -	d Drug Delivery - Moderne Arzne	d Drug Delivery - Moderne Arzneiformen und Bio Regelstudiensem. Turnus Dauer	d Drug Delivery - Moderne Arzneiformen und Biomedizinische Regelstudiensem. Turnus Dauer SWS	

Modulverantwortliche/r Prof. Dr. Marc Schneider

Dozent/inn/en Jun-Prof. Sangeun Lee (Biopharmazie und Pharmazeutische

Technologie)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen Vorlesung Biopharmazie und Drug Delivery

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Nanopartikel und Drug Delivery

Vorlesung 2 SWS 2 CP

Arbeitsaufwand

Nanopartikel und Drug Delivery

30 h Präsenzzeit Vorlesung30 h Vor- und Nachbereitung

 $\Sigma = 60 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Erlangen eines Einblicks in die Bedeutung der Nanotechnologie für die Entwicklung moderner Therapiesysteme

Inhalt

- Allgemeine Einführung zu nanopartikulären Wirkstoffträgern
- Herstellung und Charakterisierung
- Moderne Arzneiformen wie Liposomen, Mizellen, Polymer-Nanopartikel
- Zell-abgeleitete Nanopartikel
- Anwendung u.a. in der Infektionsforschung, bei Autoimmunerkrankungen oder für die Tumortherapie
- Beispiele von Nanopartikeln für diagnostische Zwecke
- Demonstrationskurs am HIPS

Unterrichtssprache

Deutsch

Literaturhinweise • siehe Buchempfehlungen der Dozent(inn)en

Biotechnologie & W	Abk.				
Advances in Dru					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Semester	2	3

Modulverantwortliche/r Prof. Dr. Marc Schneider

Dozent/inn/en Prof. Dr. Claus-Michael Lehr (HIPS)

Prof. Dr. Marc Schneider (Biopharmazie und Pharmazeutische

Technologie)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur, Vortrag

Lehrveranstaltungen / SWS

Advances in Drug Delivery

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Advances in Drug Delivery

30 h Präsenzzeit Vorlesung

60 h Vor- und Nachbereitung, Gruppenarbeit, Vortrag

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

• Get to know advanced approaches and formulations for drug delivery

Inhalt

- Basics of immunology
- Methods immunology
- Vaccines, antigens and adjuvants
- Vaccine formulations
- Vaccine biopharmacy
- History lecture
- Case study and question session

Unterrichtssprache

Deutsch und Englisch

Literaturhinweise

Biotechnologie & W	Abk.				
Praktikum Bioph	P-BPT				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Woche		2

Modulverantwortliche/r Prof. Dr. Marc Schneider

Dozent/inn/en Prof. Dr. Marc Schneider (Biopharmazie und Pharmazeutische

Technologie)

weitere Tutor(inn)en

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Protokolle

Lehrveranstaltungen / SWS

Biopharmazie und Pharmazeutische Technologie

Praktikum 2 CP

Arbeitsaufwand

Biopharmazie und Pharmazeutische Technologie

40 h Präsenzzeit Praktikum

20 h Vor- und Nachbereitung, Gruppenarbeit, Protokolle

 $\Sigma = 60 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Herstellung und Prüfung einer oder mehrerer pharmazeutischer Formulierungen unter Anwendung der dafür erforderlichen Grundoperationen
- Herstellung und Prüfung fester Arzneiformen mittels Zerkleinern, Granulieren, Klassieren, Tablettieren; Prüfung von Härte, Zerfall und Freisetzung; sowie Herstellung und Prüfung halbfester Arzneiformen mittels Rheologie, Mikroskopie, Spreitung

Inhalt

- Einführung, Sicherheitsbelehrung, Einführungsseminare
- Halbfeste Arzneiformen
- Feste Arzneiformen
- Sterile Arzneiformen
- Statistik und Demonstrationskurs

Unterrichtssprache

Deutsch

Literaturhinweise

Biomaterialien & Biomaterialien	Abk.				
Biomedical Poly i	Biomed				
Studiensem. 1/3	Regelstudiensem. 3	Turnus WS	Dauer 1 Semester	SWS 2	ECTS-Punkte 3

Modulverantwortliche/r Prof. Dr. Aránzazu del Campo Bécares

Dozent/inn/en Prof. Dr. Aránzazu del Campo Bécares (Leibniz-Institut für Neue

Materialien)

Dr. Samuel Pearson (INM) weitere Dozent(inn)en des INM

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur, Seminare

Lehrveranstaltungen / SWS

Biomedical Polymers

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

Biomedizinische Polymere

30 h Präsenzzeit Vorlesung und Seminare 60 h Vor- und Nachbereitung, Seminare

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Different kinds of biomedical polymers and their synthesis
- Methods of production and processing
- Physical properties, biocompatibility, degradability
- Interactions of cells and materials
- Fields of application, open questions for biomaterials in medicine

- Fundamental properties of biomedical polymers
- Non degradable biomedical polymers: polyolefins, polyurethanes, silicones, halogenated polymers, acrylates
- Degradable polymers: polyesters (PGA, PLA, PCL, PHA), Poly(Polyol Sebacate), Polyethers, Poly(ethylenglykol)
- Hydrogels, tough hydrogels based on interpenetrating networks
- Bioconjugation, bioorthogonal reactions for functionalization of hydrogels

- Biocompatible crosslinking chemistries in gels for cell encapsulation
- Medical fibers and medical textiles (electrospinning, 3D bioprinting)
- Biological reaction to biomaterials: biocompatibility, immune reaction
- Protein adsorption on polymeric biomaterials. Hemocompatibility
- Biofilm formation. Antibacterial surfaces
- Interactions between cells and extracellular matrix
- Mechanotransduction
- Biomaterials in the clinic: different examples

Unterrichtssprache

Englisch

Literaturhinweise

 Biomaterials Science: An introduction to Materials in Medicine (3rd Edition, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Elsevier 2013)

Biomaterialien & Bi	Abk.				
Biopolymere und	BioPol				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Semester	1	2

Modulverantwortliche/r Prof. Dr. Aránzazu del Campo Bécares

Dozent/inn/en Prof. Dr. Aránzazu del Campo Bécares (Leibniz-Institut für Neue

Materialien)

Dr. Shrikrishnan Sankaran (Leibniz-Institut für Neue Materialien)

Dr. Julieta Paez (Leibniz-Institut für Neue Materialien)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Biopolymere und Bioinspirierte Polymere

Vorlesung 1 SWS 2 CP

Arbeitsaufwand

Biopolymere und Bioinspirierte Polymere

15 h Präsenzzeit Vorlesung45 h Vor- und Nachbereitung

 $\Sigma = 60 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

 Knowledge about structure, synthesis, physical properties and application potentials of biopolymers and bioinspired polymers

Inhalt

- The extracellular matrix
- Synthesis of structural proteins: purification from natural sources, recombinant synthesis, genetic manipulation of proteins, peptide synthesis
- Description of relevant structure proteins in biomaterials field: collagen, fibrin, elastin, resilin, keratin, silk
- Adhesive proteins
- Nucleic acids and polyelectrolytes

Unterrichtssprache

Englisch

Literaturhinweise

Biomaterialien & Biomaterialien	Abk.				
Practical course	BiomatP				
Studiensem. 2	Regelstudiensem. 2	Turnus SS	Dauer 2,5 Wochen	SWS	ECTS-Punkte 2

Modulverantwortliche/r Prof. Dr. Aránzazu del Campo Bécares

Dozent/inn/en Prof. Dr. Aránzazu del Campo Bécares (Leibniz-Institut für Neue

Materialien)

weitere Tutor(inne)en des INM

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Protokolle

Lehrveranstaltungen / SWS

Biomaterials

Praktikum 2 CP

Arbeitsaufwand

Biomaterials

40 h Präsenzzeit Praktikum 20 h Vor- und Nachbereitung

 $\Sigma = 60 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Synthesis and functionalization of simple biomaterials
- Processing of biomaterials (fibers, hydrogels)
- Physical properties
- Biocompatibility, interactions of cell and materials

- Chemical and biochemical synthesis of biomaterials
- Characterization of the physical properties of biomaterials with different methods
- Synthesis of hydrogels with different mechanical properties and bio-chemical functionalization
- Additive manufacture (3D bioprinting) of hydrogels
- Characterization methods of protein adsorption on surfaces
- Fluorescence labelling and microscopy of the morphology of natural biomaterials
- Cell culture and imaging of cell-materials interactions via optical and fluorescence microscopy

Unterrichtssprache

• Englisch

Literaturhinweise

Biomaterialien & Bi	Abk.				
NanoBioMateria	NBM-1				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	2	3

Modulverantwortliche/r Prof. Dr. Eduard Arzt

Dozent/inn/en Prof. Dr. Eduard Arzt (Leibniz-Institut für Neue Materialien)

weitere Dozent(inn)en des INM

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen 1 mündliche Prüfung

Lehrveranstaltungen / SWS

<u>NanoBioMaterialien</u>

Vorlesung 2 SWS 3 CP

Arbeitsaufwand

NanoBioMaterialien

30 h Präsenzzeit Vorlesung 60 h Vor- und Nachbereitung

 $\Sigma = 90 \text{ h}$

Modulnote benotet

Lernziele/Kompetenzen

- Erlernen der größenabhängigen Eigenschaften auf Nanoebene und ihrer Anwendung für spezifische Materialien
- Industrielle Bedeutung und Verfahren der Nanobiomaterialien

- Herstellung von Nanopartikeln
- Nanokomposite
- Polymere Oberflächenstrukturen
- Biologische Materialien
- Nanopartikel in biologischer Umgebung
- Nanotribologie
- Mikro/Nanometalle
- Nanoanalytik: Mikroskopie
- Komposit-Materialien für die Optik
- Schutzschichten
- PVD/CVD Processes and Biomedical Coatings
- Biomineralisation

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

Biomaterialien & Biomaterialien	Abk.				
Praktikum Nano	NBM-P				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	2 Wochen	4 SWS	4

Modulverantwortliche/r Prof. Dr. Eduard Arzt

Dozent/inn/en Prof. Dr. Eduard Arzt (Leibniz-Institut für Neue Materialien)

Dr. Annette Kraegeloh (INM)

Zuordnung zum Curriculum Wahl

Zulassungsvoraussetzungen NanoBioMaterialien 1

Leistungskontrollen / Prüfungen Protokolle, Seminar

Lehrveranstaltungen / SWS

NanoBioMaterialien

Praktikum 4 SWS 4 CP

Arbeitsaufwand

Biomaterials

60 h Präsenzzeit Praktikum

60 h Vor- und Nachbereitung, Protokolle, Seminar

 $\Sigma = 120 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

Herstellung und Charakterisierung einfacher Materialien

Inhalt

- Herstellung von Nanopartikeln
- Charakterisierung von Nanopartikeln mittels DLS, XRD, hochauflösender Mikroskopie
- Herstellung von Beschichtungen für technologische Anwendungen
- Biochemische / -technologische Verfahren zur Herstellung Neuer Materialien
- Materialien in der Biologie (Zell-Interaktionen, Implantat-Materialien für die Medizin etc.)
- Interdisziplinäre Methoden zur Charakterisierung Neuer Materialien (Physik, Chemie, Biotechnologie)

Unterrichtssprache

Deutsch und Englisch

Literaturhinweise

Schlüsselqualifikationen

Schlüsselqualifikationen

Auswahl an Soft-Skills-Kursen zur Vermittlung von überfachlichen Schlüsselkompetenzen zur Weiterentwicklung von Persönlichkeit und Karrieremöglichkeiten, wie z.B. Zeitmanagement, Konfliktmanagement, Führungskompetenzen oder Interkulturelle Kompetenz. Des Weiteren werden Seminare zu bioethischen Themen angeboten.

Schlüsselqualifikat	Schlüsselqualifikationen:						
Grüne Gentechn	nik: Fakten, Fiktior	n, Mutation					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte		
2	2	SS	1 Semester		2		

Modulverantwortliche/r Prof. Dr. Katrin Philippar

Dozent/inn/en Prof. Dr. Katrin Philippar (Pflanzenphysiologie)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Seminarvortrag

Lehrveranstaltungen / SWS

Grüne Gentechnik

Seminar 2 CP

Arbeitsaufwand

Grüne Gentechnik

20 h Präsenzzeit und Mitarbeit Seminar

40 h Vor- und Nachbereitung

 $\Sigma = 60 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

• Einblick in wissenschaftliche Hintergründe, Methoden, juristische und ethische Aspekte der Grünen Gentechnik

Inhalt

Während des Sommersemesters sollen selbständig Themen zur grünen Gentechnik erarbeitet werden und im Rahmen eines Blockseminars vorgestellt werden. Ein Schwerpunkt liegt auf der offenen Diskussion der Thematik.

Unterrichtssprache

Deutsch

Literaturhinweise

Schlüsselqualifikation Bioethik	Schlüsselqualifikationen: Bioethik					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte	
2	2	SS	1 Semester	1	2	

Modulverantwortliche/r Prof. Dr. Mathias Montenarh

Dozent/inn/en Prof. Dr. Mathias Montenarh (Medizinische Biochemie und

Molekularbiologie UKS)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Seminarvortrag

Lehrveranstaltungen / SWS

Bioethik

Seminar 2 CP

Arbeitsaufwand

<u>Bioethik</u>

30 h Präsenzzeit und Mitarbeit Seminar

30 h Vor- und Nachbereitung

 $\Sigma = 60 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

• Erlangen einer ethischen Grundkompetenz

Inhalt

- Gesetz zur Regelung der Gentechnik (GenTG), Embryonenschutzgesetz (ESchG), Stammzellgesetz (StZG), Transplantationsgesetz (TPG)
- Ethik, Ethos, Moral, Menschenwürde, Tierethik, Tierschutz,
- Chancen und Risiken der Gentechnik, Stammzellen, Klonen, Genomforschung, Embryonenforschung, Reproduktionsmedizin, Therapeutisches Klonen,
- Ethik am Lebensende,
- Ethik und Religion

Unterrichtssprache

Deutsch

Literaturhinweise

Schlüsselqualifikati	Schlüsselqualifikationen:						
Exkursion zu Bio							
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte		
1-3	1-3	WS/SS	1-2 Tage		1-2		

Modulverantwortliche/r Dozent(inn)en der Biowissenschaften

Dozent/inn/en Dozent(inn)en der Biowissenschaften

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

Exkursion

ein- bis mehrtägige Exkursion 1-2 CP

Arbeitsaufwand

Exkursion

12-36 h Teilnahme an ein- bis mehrtägiger Exkursion

18-24 h Vor- und ggf. Nachbereitung

 $\Sigma = 30-60 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

• Einblicke in Unternehmensaktivitäten und berufliche Einstiegsmöglichkeiten

Inhalt

• Besuch von Forschungsinstitutionen, Biotech-Unternehmen und Fachmessen

Unterrichtssprache

Deutsch und Englisch

Literaturhinweise

Schlüsselqualifikation	Abk.						
Möglichkeiten u	Möglichkeiten und Grenzen der Bioinformatik in rechtlicher Hinsicht						
Studiensem.							
2	2	SS	-	1	1		

Modulverantwortliche/r PD Dr. Michael Hutter

Dozent/inn/en PD Dr. Michael Hutter (Bioinformatik)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Kurzquiz

Lehrveranstaltungen / SWS

Möglichkeiten und Grenzen der Bioinformatik

Vorlesung 1 CP

Arbeitsaufwand

Möglichkeiten und Grenzen der Bioinformatik

12 h Präsenzzeit und Mitarbeit

18 h Eigenstudium

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Die Studierenden werden in der Veranstaltung mit den rechtlichen Rahmenbedingungen vertraut gemacht, die die wissenschaftliche Beschäftigung mit bioinformatischen Aufgabenstellen mit sich bringt; anhand realer Fallbeispiele sollen die Studenten die Optionen und Konsequenzen eigenen Handelns erkennen.
- Sie sollen dadurch in die Lage versetzt werden, die rechtliche Problematik während Abschlussarbeiten und in der beruflichen Praxis zu erkennen, und entsprechende Lösungen erarbeiten können
- Ein anspruchsvolles Element dieser Veranstaltung ist, dass sich die Studierenden mit Rahmenbedingungen auseinandersetzen müssen, die ansonsten nicht Teil ihres Studiums sind; dabei geht es um konkrete Handlungsaspekte, die sich daraus ergeben, und um die Entwicklung eines geschärften Bewusstseins für die Thematik.
- Insgesamt steht dabei die kritische Beurteilung und Abschätzung von Konsequenzen hinsichtlich verantwortungsvollen Handelns im Vordergrund.

Inhalt

 Den Schwerpunkt der Veranstaltung bilden die Anforderungen an die Forschung, die sich aus den Regelungen zur Datenverarbeitung ergeben. Außerdem werden Handlungsoptionen in den verschiedenen Stadien der Fallbeispiele vorgestellt. • Einführung; Bestehende Rechtsgrundlagen; Datenerhebung, -speicherung und -schutz; Freiheit der Forschung; Tierschutz; Verwertung von Ergebnissen; Publizierbarkeit; Gewissensfreiheit; Fallbeispiele

Unterrichtssprache

• Deutsch

Literaturhinweise

-

Schlüsselqualifikation	Schlüsselqualifikationen:						
Wissenschaftlich	es Arbeiten						
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte		
1-3	1-3	WS/SS	-	-	1		

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Sophia Dorka (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

Wissenschaftliches Arbeiten

Seminar 10 AE = 1 CP

Arbeitsaufwand

Wissenschaftliches Arbeiten

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Fähigkeiten zur Planung einer wissenschaftlichen Arbeit
- Recherchekompetenz (Literatursuche, Materialbeschaffung, Auswahl des empirischen Verfahrens)
- Erlernen von Methoden zur Konzeption und Gliederung der Arbeit (Fragestellungen formulieren, Schwerpunkte setzen)
- Wissenschaftliches Schreiben

Inhalt

Im Zentrum eines erfüllenden und erfolgreichen Studiums steht das wissenschaftliche Arbeiten. Die Kompetenzen, die das wissenschaftliche Arbeiten erfordern, spielen jedoch nicht nur im Studium eine wichtige Rolle, sondern können auch im späteren Berufsleben von großer Bedeutung sein. Doch oft ist es für Studierende nicht ganz klar, was von Ihnen bei der Erstellung einer Hausarbeit, eines Vortrags oder der Abschlussarbeit an wissenschaftlicher Arbeit erwartet wird. Zwischen den unterschiedlichen Zitierweisen, Fragestellungen und Möglichkeiten eine Arbeit zu gliedern, kann man schnell die Orientierung verlieren. In diesem Workshop soll den Teilnehmer*innen deshalb vermittelt werden, wie sie sich – unabhängig von den Ansprüchen einer spezifischen Fakultät – der grundlegenden

Werkzeuge des wissenschaftlichen Arbeitens bedienen und diese gewinnbringend in ihrem Studium einsetzen können.

Unterrichtssprache

Deutsch

Literaturhinweise

_

Schlüsselqualifikati	Abk.				
Motivation – Wi	Motivation – Wie begeistere ich mich selbst und andere				
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1-3	1-3	WS/SS	-	-	1

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Marion Bredebusch (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

<u>Selbstmotivation</u>

Seminar 10 AE = 1 CP

Arbeitsaufwand

Selbstmotivation

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Kennenlernen geeigneter Strategien der Selbstmotivation
- Führungskompetenz

Inhalt

Motivation ist die Grundvoraussetzung für erfolgreiches Handeln – sei es beim Lernen, Arbeiten, Schreiben, Forschen oder auch im privaten Umfeld, wie z.B. beim Sport machen. Motivation hat etwas damit zu tun, in Bewegung zu kommen. Sich selbst und andere zu motivieren steht in diesem Seminar im Vordergrund. Sie erhalten wichtige Erkenntnisse über vielversprechende Motivationsstrategien, lernen ihre eigenen inneren Antreiber kennen und können danach sich und auch andere – soweit Sie überhaupt Einfluss haben – motivieren. Der Schwerpunkt des Workshops liegt bei der Selbstmotivation; die anderen Aspekte werden lediglich bezüglich ihrer Wirksamkeit kurz angesprochen

Unterrichtssprache

Deutsch

Literaturhinweise

Schlüsselqualifikation	Abk.				
Mit Teamkompetenz gemeinsam zum Ziel					
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1-3	1-3	WS/SS	-	-	1

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Prof. Dr. Alexander Bazhin (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

<u>Teamkompetenz</u>

Seminar 10 AE = 1 CP

Arbeitsaufwand

<u>Teamkompetenz</u>

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Verständnis theoretischer Strukturen der Kooperation
- Gestaltung praktischer und interaktiver Teamarbeit
- Teamplay

Inhalt

Die Zusammenarbeit auf vielschichtigen Ebenen mit unterschiedlichen Partnern ist in unserer Gesellschaft und im beruflichen Alltag immer mehr gefragt. Eine Kooperation in und mit multiprofessionellen und gar interkulturellen Teams gehört zunehmend zu unserer Arbeitsroutine. Wie gelingt echte Teamarbeit, welche Vorteile bietet sie und wie kann die positive Einstellung der Teilnehmenden zur Kooperation gefördert werden?

Unterrichtssprache

Deutsch

Literaturhinweise

.

Schlüsselqualifikation	Schlüsselqualifikationen:						
Führungskompe	tenzen						
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte		
1-3	1-3	WS/SS	-	-	1		

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Dr. Anders Seim (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

<u>Führungskompetenzen</u>

Seminar 10 AE = 1 CP

Arbeitsaufwand

<u>Führungskompetenzen</u>

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Kenntnis grundlegender Führungsthemen
- Verständnis von Führungsaufgaben und situativem Führen
- Kennenlernen von Persönlichkeitstypen und Führungspersönlichkeiten

Inhalt

Führungskompetenzen sind in vielfältigen Berufsszenarien erforderlich, nicht nur, wenn man "offizielle" Führungskraft ist. Mitarbeiter*innen müssen fähig sein, sich selbst zu führen und in Teams, Abteilungen und in Projekten in interaktiver Weise Einfluss auszuüben; i. S. von "Führen ohne hierarchische Macht". Dieser Workshop vermittelt einen Einstieg in grundlegende Führungsthemen. Hierzu werden unterschiedliche Führungsaufgaben erörtert, Definitionen von Führung vorgestellt sowie das Führungsstil-Modell des "Situativen Führens". Die Reflexion über unterschiedliche "Persönlichkeitstypen" und die Annäherung an die eigene Person als (potenzielle) Führungspersönlichkeit runden den Workshop ab. Die Teilnehmendenzahl ist aus didaktischen und räumlichen Gründen begrenzt.

Unterrichtssprache

• Deutsch

Literaturhinweise

_

Schlüsselqualifikati	Schlüsselqualifikationen:							
Konfliktmanage	ment							
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte			
1-3	1-3	WS/SS	-	-	1			

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Dr. Anders Seim (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

<u>Konfliktmanagement</u>

Seminar 10 AE = 1 CP

Arbeitsaufwand

Konfliktmanagement

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Erlangen konfliktmanagender Fähigkeiten
- Teamkompetenz

Inhalt

Wer von uns hat das nicht schon erlebt? Aus kleinen Konflikten werden große Hindernisse, die uns sowohl die Zusammenarbeit als auch die Aufgaben- und Zielorientierung erschweren. Gerade zwischenmenschliche Konflikte, Konflikte in Teams und in Hierarchien führen häufig zu Motivationsblockaden, die nicht unbedingt auftreten müssten, wenn einige Grundhaltungen und Spielregeln des Konfliktmanagements berücksichtigt würden. Ziel dieses Workshops ist, einführende konfliktmanagende Fähigkeiten kennenzulernen, die Ihnen dabei helfen können, die Kooperationskultur zu verbessern – sei es in der Hochschule, in Organisationen, in Unternehmen oder zu Hause, in größeren oder kleineren Teams.

Unterrichtssprache

Deutsch

Literaturhinweise

.

Schlüsselqualifikation	Schlüsselqualifikationen:						
Zeitmanagemen	t						
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte		
1-3	1-3	WS/SS	-	-	1		

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Waltraud Kuhn (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

Zeitmanagement

Seminar 10 AE = 1 CP

Arbeitsaufwand

Zeitmanagement

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Kennenlernen geeigneter Werkzeuge des Zeitmanagements
- Erlangen eines effizienten Selbstmanagements
- Identifikation von Zeitdieben und Zeitfressern

Inhalt

Der Workshop bietet den Teilnehmer*innen die Möglichkeit ihren individuellen Umgang mit der Zeit zu reflektieren und neue Strategien für Ihr Zeitmanagement zu entwickeln. Sie lernen nicht nur bewährte Werkzeuge des Zeitmanagements kennen, sondern auch, wie Sie diese für Ihr eigenes Selbstmanagement nutzen können. Hierzu werden Ihnen praktische und einfach umzusetzende Strategien und Techniken aufgezeigt. Im Workshop beschäftigen Sie sich u. a. mit dem persönlichen Organisationstyp, den Zeitdieben, den Zeitfressern und setzen sich intensiv mit ihren eigenen Zielen und deren Erreichbarkeit auseinander. Darüber hinaus lernen Sie die Bedeutung von Pausen und deren Mehrwert kennen, um den Stress zu stoppen, richtig abzuschalten und kraftvoll durchstarten zu können.

Unterrichtssprache

Deutsch

Literaturhinweise

Schlüsselqualifikation	Schlüsselqualifikationen:						
Karriereziel Doktortitel – Wohin führt mich eine Promotion?							
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte		
1-3	1-3	WS/SS	-	-	1		

Dr. Thomas Schmidtgall (ZelL)

Dozent/inn/en Dr. Theo Jäger (ZelL)

Zuordnung zum Curriculum Wahl (SQ)

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen keine

Lehrveranstaltungen / SWS

Karriereziel Doktortitel

Seminar 10 AE = 1 CP

Arbeitsaufwand

Karriereziel Doktortitel

10 h Präsenzzeit und Mitarbeit Seminar

20 h Vor- und Nachbereitung

 $\Sigma = 30 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Promotion als Einstieg in die Karriere in der Wissenschaft bzw. der außerakademischen Arbeitswelt
- Motivation, Ablauf und Rahmenbedingungen von Doktorarbeiten
- Standortbestimmung: Verfüge ich über die notwendigen Kompetenzen und Persönlichkeitsmerkmale sowie passende Lebensziele für eine Karriere in der Wissenschaft bzw. (eher) im außeruniversitären Bereich?
- Ziel-und Wegbestimmung: Wohin will ich nach der Promotion und wie erreiche ich dieses Ziel am effizientesten?

Inhalt

Viele Akademiker*innen stellen sich die Frage, ob sie nach dem Studium eine Doktorarbeit schreiben bzw. ein Promotionsprojekt durchführen sollen. Manche wollen mit dem Doktortitel eine Forscherkarriere beginnen, andere möchten im außerakademischen Bereich arbeiten und streben verantwortliche Tätigkeiten in Wirtschaft und Gesellschaft an. In jedem Fall stellt sich die Frage nach der Motivation hinter der Durchführung einer Promotion und dem Nutzen, den die Erlangung des Doktortitels nach sich ziehen kann. Darüber hinaus muss der*die Einzelne einschätzen, ob seine*ihre Kompetenzen und Persönlichkeitsmerkmale sowie Lebensziele zum Karriereweg in der Wissenschaft bzw. (eher) zur Karriere im außerakademischen Bereich passen.

Der Workshop soll durch die interaktive Behandlung dieser Themen die Entscheidung unterstützen, ob das Erstellen einer Doktorarbeit als nächsten Karriereschritt für den*die Einzelne*n als sinnvoll erscheint.

Unterrichtssprache

Deutsch

Literaturhinweise

Auflagenfächer

Auflagenfächer

Gemäß BMPRO §12 Abs. 5 und 6 sowie PO §10 Abs. 3 kann je nach Ausrichtung des grundständigen Studiengangs eine Zulassung unter der Auflage erfolgen, studienbegleitend zusätzliche Kenntnisse in den Fächern Biochemie, Mikrobiologie oder Genetik durch den Besuch geeigneter Vorlesungen zu erwerben. Die dafür vorgegebene Frist beträgt 3 Semester.

Auflagenfach:	Auflagenfach:							
Biochemie					BC-BT			
Studiensem. 1/3	Regelstudiensem. 1	Turnus WS	Dauer 1 Semester	SWS 4	ECTS-Punkte 5			

Modulverantwortliche/r Prof. Dr. Bruce Morgan

Dozent/inn/en Prof. Dr. Bruce Morgan (Biochemie)

Dr. Frank Hannemann (Biochemie)

Zuordnung zum Curriculum ggf. Auflage

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

<u>Biochemie</u>

Vorlesung 4 SWS 5 CP

Arbeitsaufwand

Biochemie

60 h Präsenzzeit 90 h Selbststudium

 $\Sigma = 150 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Bauelemente biologischer Systeme
- Prinzipien der enzymatischen Katalyse und deren Regulation
- Zusammenhänge zwischen Struktur und Funktion von Molekülen
- Stoffwechselwege des Katabolismus und Anabolismus und deren Funktionsweise

Inhalt

- Synthese und Umwandlung funktioneller Gruppen beherrschen
- Molekulare Bausteine (Aminosäuren, Proteine, Lipide, Kohlenhydrate, etc.)
- Biochemische Katalyse und Regulation
- Stoffwechsel: Energieumwandlung, Synthese molekularer Bausteine

Unterrichtssprache

Deutsch und Englisch

Literaturhinweise

- Stryer, L., "Biochemie" Spektrum Akad. Verlag
- Voet, D. & Voet, J.G., "Biochemie", VCH, Weinheim
- Lehninger/Nelson/Cox, "Prinzipien der Biochemie", Spektrum Akad. Verlag

Auflagenfach:					Abk.
Mikrobiologie					MI-BT
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
2	2	SS	1 Semester	4	5

Modulverantwortliche/r Prof. Dr. Karin Römisch

Dozent/inn/en Prof. Dr. Karin Römisch (Mikrobiologie)

Zuordnung zum Curriculum ggf. Auflage

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

<u>Mikrobiologie</u>

Vorlesung 4 SWS 5 CP

Arbeitsaufwand

Mikrobiologie

60 h Präsenzzeit 90 h Selbststudium

 $\Sigma = 150 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Verständnis der mikrobiologischen Grundlagen
- Kenntnisse über den Aufbau (Chemie) und Funktion der pro- und eukaryontischen Zelle
- Kenntnisse der zentralen Stoffwechselwege
- Grundlagen der Ernährung und des Wachstums von Mikroorganismen
- Kenntnisse über die systematische und phylogenetische Einordnung von Mikroorganismen

Inhalt

- Geschichte der Mikrobiologie
- Mikrobielle Zellstruktur und -funktion
- Mikrobielle Ernährung und Metabolismus
- Mikrobielles Wachstum & dessen Kontrolle
- Bakterien- und Hefegenetik
- Evolution und Systematik der Mikroben
- Mikrobielle Genomik
- Mikroorganismen in Industrie und Forschung

Unterrichtssprache

• Deutsch und Englisch

Literaturhinweise

- Brock: Biology of Microorganisms (Prentice Hall) (Deutsch von Pearson)
- Fuchs (Schlegel): Allgemeine Mikrobiologie (Thieme)
- Alberts: The Cell
- Pollard/Earnshaw: Cell Biology
- Madhani: From a to alpha -Yeast as a model for cellular differentiation
- Cypionka: Grundlagen der Mikrobiologie (Springer)
- Fritsche: Mikrobiologie (Spektrum)
- Krämer: Lebensmittel-Mikrobiologie (UTB)
- Renneberg: Biotechnologie für Einsteiger

Auflagenfach:	Abk.				
Genetik					GE-BT
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1/3	3	WS	1 Semester	4	5

Modulverantwortliche/r Prof. Dr. Jörn Walter

Dozent/inn/en Prof. Dr. Jörn Walter (Genetik)

Dr. Sascha Tierling (Genetik)

Zuordnung zum Curriculum ggf. Auflage

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Klausur

Lehrveranstaltungen / SWS

Genetik

Vorlesung 4 SWS 5 CP

Arbeitsaufwand

Genetik

60 h Präsenzzeit 90 h Selbststudium

 $\Sigma = 150 \text{ h}$

Modulnote unbenotet

Lernziele/Kompetenzen

- Einführung in grundlegende Mechanismen der Formalgenetik
- Einführung in die Molekulargenetik: Entstehung und Reparatur von Mutationen, Prinzipien der Replikation und Rekombination, grundlegende Mechanismen der Genregulation
- Erlernen genetischer Grund-Prinzipien und der genetischen Terminologie
- Erlernen theoretischer Grundlagen der Molekularen Genetik
- Konzeptionelles Grundverständnis genetischer Probleme

Inhalt

- Einführung in die Grundlagen und Terminologie der Genetik
- Prinzipien genetischer Vererbung (Klassische/Formal-Genetik)
- Aufbau, Struktur und Replikation der DNA
- Einführung in Zytogenetik, Chromosomen und Chromatin Struktur
- Realisierung des genetischen Codes: Transkription und Translation
- Grundprinzipien der Reparatur und Rekombination
- Einführung in Prinzipien der Genregulation

- Einführung in die Populationsgenetik
- Einführung in die Genomstruktur und genetische Kartierung
- Beispiele humangenetischer Erkrankungen und Analysemethoden

Unterrichtssprache

Deutsch und Englisch

Literaturhinweise

- Graw "Genetik" 4. Auflage Springer Verlag 2006
- Knippers "Molekulare Genetik", 9. Auflage ,Thieme Verlag 2006
- Lewin "Genes IX" Bartlett & Jones, 2007
- D.P.Clark "Molecular Biology Understanding the Genetic Revolution" 2006 Springer Verlag